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ABSTRACT

Seasonally continuous long-term information on surface water and flooding extent over subcontinental scales is
critical for quantifying spatiotemporal changes in surface water dynamics. We used seasonally continuous
Landsat TM/ETM + data and generic random forest-based models to synoptically map the extent and dynamics
of surface water and flooding (1986-2011) over the Murray-Darling Basin (MDB). The MDB is a large semi-arid
basin with competing demands for water that has recently experienced one of the most severe droughts in the
southeast of Australia. We used a stratified random probability sampling design with 500 sample pixels each ob-
served across time to assess the accuracy of the surface water maps. We further developed models to map
flooded forest at a riparian site that experienced severe tree dieback. Water indices and bands 5 and 6 were
among the top 10 explanatory variables most important for mapping surface water. Surface water extent per sea-
son per year showed high inter-annual and seasonal variability, with low extent and variability during the Mil-
lennium Drought (1999-2009). Accuracy assessment yielded an overall classification accuracy of 99.9%
(£0.02% standard error) with 87% (£3%) and 96% (£ 2%) producer's and user's accuracy of water, respectively.
User's and producer's accuracies of water were higher for Landsat 7 than Landsat 5 data. Both producer's and
user's accuracies of water were lower in wet years compared to dry years. The approach presented here can be
further developed for global application and is relevant to areas with competing water demands. Quantifying
the uncertainty of the accuracy assessment and providing an unbiased accuracy estimate are imperative steps
when remotely sensed products are intended to be used for follow on applications.
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1. Introduction

Surface water is a critical resource in semi-arid areas (Hughes,
Kingston, & Todd, 2011), which together with arid areas cover one
third of the globe (FAO, 1989). Surface water bodies and seasonally in-
undated floodplains in semi-arid areas play major roles in water avail-
ability, hydrological and biogeochemical cycles (Pricope, 2013).
Surface water bodies in semi-arid areas have been impacted dramatical-
ly due to large scale land cover and land use changes, climate change
and variability, and increasing water demands from agricultural, indus-
trial and domestic water uses (Leblanc, Tweed, Van Dijk, & Timbal,
2012). In water scarce regions, understanding the spatiotemporal pat-
terns of surface water extent and flooding dynamics (hereafter surface
water dynamics) is important as changes in surface water can lead to
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flooding or drought, and water shortages (Feyisa, Meilby, Fensholt, &
Proud, 2014), with significant consequences to human life, agricultural
systems, global water, and food security (Hanjra & Qureshi, 2010).
Australia's surface water bodies in arid and semi-arid regions are
characterized by ‘boom and bust’ ecological dynamics with extreme
flow variability (Arthington & Balcombe, 2011). Australia is also subject
to El Nifio Southern-Oscillation (ENSO) induced climatic variability,
with a recent example being the transition from the droughts of the
past decade to the La Nifia rains that caused flooding across large
areas of Eastern Australia in 2010 (Heberger, 2011). To understand
these dynamics, spatially explicit and temporally dynamic, statistically
validated, seasonally continuous high resolution surface water and
flooding maps developed in a synoptic yet detailed way are needed.
Satellite remote sensing has been widely used for mapping surface
water extent, with Landsat data being one of the most common types
of data employed for mapping surface water. The infrared and visible
bands on the Thematic Mapper (TM) and Enhanced Thematic Mapper
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Plus (ETM +) sensors on Landsat 5 and 7, respectively, allow separation
of surface water from the land surface (Baker, Lawrence, Montagne, &
Patten, 2006, 2007; Bwangoy, Hansen, Roy, De Grandi, & Justice, 2010;
Feng, Sexton, Channan, & Townshend, 2015; Margono, Bwangoy,
Potapov, & Hansen, 2014; Ozesmi & Bauer, 2002; Tulbure & Broich,
2013; Verpoorter, Kutser, Seekell, & Tranvik, 2014; Ward et al., 2014;
Wright & Gallant, 2007; Yamazaki, Trigg, & Ikeshima, 2015).

Previous methods mapping surface water used water indices based
on single spectral band thresholding, two spectral bands such as the
Normalized Difference Water Index (NDWI, (McFeeters, 1996) and
the Modified Normalized Difference Water Index (MNDWI, (Xu, 2006)
or multi-band indices followed by thresholding. However, water as a
spectral target is variable in space and time. Consequently, identifying
a single threshold yielding the highest accuracy can be time consuming
and may not be feasible as the spectral signature of water varies as a
function of sediment load, algal content, depth and bottom reflectance
signal (Jensen, 2007). In previous studies using optical data (Feng
et al, 2015; Frazier & Page, 2000; Kingsford, Brandis, Thomas,
Crighton, Knowles & Gale, 2004; Verpoorter, Kutser, Seekell & Tranvik,
2014; Verpoorter, Kutser, & Tranvik, 2012; Yamazaki et al., 2015),
flood extent mapping over large areas has been compromised by turbid-
ity or the spectral response of bottom sediments increasing the diversity
of occuring water signatures. Hence, manual editing has often been nec-
essary (Danaher & Collett, 2006). More recent methods used a threshold
of the Automated Water Extraction Index (AWEI) for improved classifi-
cation in areas affected by shadow and dark surfaces such as mountain-
ous areas (Feyisa et al,, 2014). Another approach is to use a combination
of spectral bands and other variables and classification trees to develop
models based on a range of predictor variables rather than selected in-
dices (Tulbure & Broich, 2013; Wright & Gallant, 2007) thus modelling
and thereby accounting for regional differences in threshold values
when mapping surface water. Classification trees are widely used in
land cover classifications (Friedl & Brodley, 1997; Pal & Mather, 2003)
and have the ability to accurately map surface water for relatively
small areas with homogenous classes (Tulbure & Broich, 2013). Howev-
er, previous work has shown that ensemble classifiers such as random
forest are superior to a single classification tree, especially when targets
are spectrally variable (Pal, 2005; Rodriguez-Galiano, Ghimire, Rogan,
Chica-Olmo, & Rigol-Sanchez, 2012), such as surface water bodies and
flooded areas of the MDB.

Previous work mapping surface water and wetland dynamics has es-
timated the accuracy of the classification without providing the uncer-
tainty (i.e., standard errors of the accuracy estimates) of the estimate
(Mueller et al., 2016; Tulbure & Broich, 2013; Wright & Gallant, 2007).
Quantifying the uncertainty of the accuracy assessment and providing
an unbiased estimate of the accuracy of SWD products are imperative
steps when remotely sensed products are intended to be used for
follow on applications, as outlined in this work. These steps are only
possible when using a probability sampling design, which is a critical
part of a statistically rigorous and unbiased accuracy assessment
(Stehman & Czaplewski, 1998). For the entire MDB specifically, there
is no validated surface water dynamics and flooding layer using a statis-
tically rigorous and unbiased accuracy assessment that includes uncer-
tainty estimates, based on the entire Landsat archive but recent work
has shown a surface water map aggregated over time (Mueller et al.,
2016). Moreover, for the entire MDB there is no quantification of sea-
sonally continuous dynamics of surface water and flooding extent
from 1986 to 2011 in the context of the major hydroclimatic events of
the SE of Australia.

This study used almost three decades of seasonally continuous time
series of Landsat and ancillary data to automatically generate a compre-
hensive historical record of validated surface water dynamics (1986-
2011) for the entire MDB, one of the largest river basins of Australia.
The objectives of this research were to: (1) Synoptically map the extent
and dynamics of surface water with internally consistent algorithms
using the seasonally continuous Landsat data (TM and ETM +) over

26 years. This time period encompassed the longest and most severe
drought on record, the Millennium Drought (1999-2009) and the
2010-2011 La Nifa flood years; (2) Implement a statistically rigorous
accuracy assessment that includes unbiased accuracy estimates, includ-
ing accuracy of the surface water dynamics product using Landsat 5 and
Landsat 7 separately, accuracy across time, and accuracy contrasting
‘wet’ and ‘dry’ years; and (3) use the same method described and devel-
oped for objective (1) for a new application to map flooded forest areas
in the largest river red gum forest in the world, a riparian site that
sustained tree dieback.

2. Methods
2.1. Study area

2.1.1. Murray-Darling Basin

The MDB is a large semi-arid region (14% of Australia's area) with
scarce water resources, high natural hydroclimatic variability and com-
peting water demands. The MDB contains one of Australia's largest river
systems (more than 1 million km?) and important groundwater sys-
tems. The basin drains one seventh of the Australian land mass, spans
four states, New South Wales, Victoria, Queensland and South
Australia and the Australian Capital territory and harbours the three
largest rivers of Australia: the Darling River (2740 km), the Murray
River (2520 km) and the Murrumbidgee River (1575 km). The basin
has been termed Australia's agricultural heartland producing one third
of Australia's food supply. Almost three quarters of Australia's irrigated
crops and pastures are grown in the basin with 84% of land used for ag-
ricultural production, and only 10% for conservation and natural envi-
ronments (Murray-Darling Basin Authority, 2012). The different land
cover and land use types, including multiple crops with different phe-
nologies create a wide variability of spectral signatures in the basin
(Fig. 1)

There are nearly 30,000 wetlands in the MDB, 16 Ramsar listed, in-
cluding the world's largest river red gum forest (Barmah-Millewa,
Fig. 1), and 200 wetlands of national significance (Australian Govern-
ment, 2012). The majority of these wetlands are reliant on intermittent
river flows and vary in response to water availability. The majority of
the runoff in the Murray-Darling river system originates from a small
percentage of the basin area along the southern and eastern rim. Almost
86% of the catchment area contributes only irregular run-off to rivers
(Australian Government, 2012).

2.1.2. Barmah-Millewa Forest (BMF)

We focused on the largest Eucalyptus camaldulensis (Dehnh.)
river red gum forest in the world (approximately 700 km?), the BMF
(Fig. 1), an area currently experiencing decline in health of river red
gum, as a test case for investigating dynamics of flooded forest. The
site provides a dramatic example of floodplain forest dieback
(Cunningham, Mac Nally, Read, Baker, White, Thomson & Griffioen,
2009; Palmer, Reidy Liermann, Nilsson, Flérke, Alcamo, Lake & Bond,
2008). Further, BMF is a key site for management of environmental
flows (environmental water added to the system to mimic natural
flooding patterns and maintain ecological condition). Recently, the site
experienced the largest environmental water release in Australia's his-
tory (McGinness, Arthur, Ward, & Ward, 2014). The BMF is located on
the Murray River at the border between the Australian states of New
South Wales and Victoria (Fig. 1) and has a semi-arid climate with pre-
dominantly winter rainfall (BoM, 2013). Previous disturbances to the
site include river regulation, water extraction, burning, timber harvest-
ing and grazing (Mac Nally & Parkinson, 2005). The BMF consists of
nearly 70% open canopy river red gum forest, river red gum woodland
(23%) and mixed box eucalypt woodland (6%) (MDBA, 2010). River
red gum tree densities range from more than 700 trees/ha in open can-
opy forests to less than 50 trees/ha in open woodlands (kerle, 2005;
OEH, 2012).
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