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We establish a methodology for calculating uncertainties in sea surface temperature estimates from coefficient
based satellite retrievals. The uncertainty estimates are derived independently of in-situ data. This enables
validation of both the retrieved SSTs and their uncertainty estimate using in-situ data records. The total uncer-
tainty budget is comprised of a number of components, arising from uncorrelated (e.g. noise), locally systematic
(e.g. atmospheric), large scale systematic and sampling effects (for gridded products). The importance of
distinguishing these components arises in propagating uncertainty across spatio-temporal scales. We apply the
method to SST data retrieved from the Advanced Along Track Scanning Radiometer (AATSR) and validate the re-
sults for two different SST retrieval algorithms, both at a per pixel level and for gridded data.We find good agree-
ment between our estimated uncertainties and validation data. This approach to calculating uncertainties in SST
retrievals has a wider application to data from other instruments and retrieval of other geophysical variables.
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1. Introduction

Uncertainty is inherent in all geophysical measurements andmust be
appropriately characterized for their scientific application. Data providers
have a responsibility to communicate the levels of uncertainties associat-
ed with their products and inform data users of the correct methodology
for using uncertainty information provided. Within the Sea Surface Tem-
perature Climate Change Initiative (SSTCCI) project (Hollman et al., 2013;
Merchant et al., 2014) we aim to provide an uncertainty budget for every
SST value provided in products (skin temperature, SST at 0.2mdepth and
spatially averaged SST).We aim to derive uncertainty estimates indepen-
dently of SST validation datasets, allowing validation of both the SST
values and their associated uncertainty.

The terms ‘error’ and ‘uncertainty’ are sometimes used interchange-
ably, but have distinct standard definitions that will be adhered to
throughout this paper. Error is the difference between a measured
value and the true value of the measurand (JCGM, 2008; Kennedy,
2014). In practice we know neither the true value nor therefore the
error for a particular measurement. However the distribution of the er-
rors can often be estimated and this distribution characterizes the uncer-
tainty in the measured value. Formally, uncertainty is a parameter
characterizing the dispersion of values that could reasonably be

attributed to the measured value (JCGM, 2008). To quantify uncertainty
in this paper we quote one standard deviation of the error distribution.

It is common to provide generic uncertainty estimates for remotely
sensed SST derived via comparisonwith in-situ datasets during validation
activities. The standards of the Group for High Resolution Sea Surface
Temperature (GHRSST) specify the provision in all datasets of single sen-
sor error statistics (SSES). For pragmatic reasons, SSES are defined to com-
prise themean difference and standard deviation of remotely sensed SST
matched to a ‘reference’ dataset (GHRSST Science Team, 2010). Drifting
buoy SSTs are often used as the ‘reference’. Mean and standard deviation
validation statistics are oftenprovided as globally invariant dataset specif-
ic values (Casey & Cornillon, 1998; May, Parmeter, Olszewski, &
McKenzie, 1997; Reynolds, Rayner, Smith, Stokes, &Wang, 2002). An ad-
ditional field indicating the retrieval quality level can be specified at pixel
resolution providing information on the likelihood of cloud contamina-
tion, noise amplification at extreme satellite zenith angles or input data
quality (Donlon et al., 2007; Kilpatrick, Podestá, & Evans, 2001). An exten-
sion of this approach is the MODerate Resolution Infrared Spectrometer
(MODIS) algorithm, which provides validation-based uncertainty infor-
mation stratified by season, latitude, surface temperature, satellite zenith
angle, a selected brightness temperature difference, SST quality level and
day/night (Castro et al., 2010).

Sources of uncertainty in remotely sensed SST are intrinsic to the re-
trieval process and the data utilized. Uncertainties vary from pixel to
pixel due to local changes in instrument noise, satellite viewing geometry
and atmospheric conditions.We present here amethod of estimating SST
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retrieval uncertainty that accounts for these factors at the pixel level.
There are a number of sources of uncertainty in SST measurement and
the need to differentiate the effects of random, and systematic errors
has been previously noted (Casey & Cornillon, 1998; Kennedy, 2014;
Merchant et al., 2012; Reynolds et al., 2002). Gridding of products intro-
duces sampling uncertainties and a number of studies have considered
these when constructing global or regional SST datasets from in-situ ob-
servations (Brohan, Kennedy, Harris, Tett, & Jones, 2006; Folland et al.,
2001; Jones, Osborn, & Briffa, 1997; Morrissey & Greene, 2009; Rayner
et al., 2006; She, Hoyer, & Larsen, 2007).

In this paper,we consider uncorrelated and locally systematic effects
contributing to SST uncertainty. The random or uncorrelated effects
arise from noise in the satellite brightness temperature, which propa-
gates into the retrieved SST. Locally systematic effects cause errors
that are correlated on synoptic scales of atmospheric variability and
are related to the retrieval method itself interacting with changes in at-
mospheric properties (Barton, 1998; Embury & Merchant, 2012; Le
Borgne, Roquet, & Merchant, 2011; Merchant et al., 2012; Minnett,
1986; Minnett & Corlett, 2012). We also discuss uncertainties from
large scale systematic effects (spatially coherent on larger scales than
synoptic features). In a companion paper (Bulgin et al., 2016-in this
issue) we derive a method for calculating sampling uncertainty in
gridded products due to incomplete sampling of observations in each
grid cell, primarily as a result of cloud cover. In this paper, we use results
from Bulgin et al. (2016-in this issue), and, for completeness, show how
sampling uncertainty combines with other components of uncertainty
in gridded products.

The remainder of the paper is structured as follows. Section 2 de-
scribes the theory behind the calculation of uncertainties, their propaga-
tion andhow this is applied to different levels of SST data (orbit data and
griddedproducts). Section 3 describes howan initial uncertainty budget
is constructed from errors originating from random, locally correlated
and sampling effects. In Section 4 we present a validation of our uncer-
tainty budget and in Section 5 provide a discussion of the results. We
conclude the paper in Section 6.

2. Uncertainty calculation and propagation

We construct an uncertainty budget for SST measurements in CCI
products comprised of uncertainty components arising from random,
locally systematic, large-scale systematic and sampling effects. The full
equation for the propagation of uncertainty in a variable y, (u(y)),
given that y is related to input quantities xi via y= f(x1,… ,… ,xn), is de-
fined as Eq. (1) in the Guide to the Expression of Uncertainty in Mea-
surement (GUM) (JCGM, 2008).
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Uncertainty is expressed with respect to (y) in the GUM, and we re-
produce this notation throughout the paper. However, in Earth Obser-
vation, we conventionally relate a retrieval estimate x to observations
y i.e. x ¼ f ðyÞ which is the reverse convention. The first term in Eq. (1)
describes the propagation of uncertainties from uncorrelated errors.
These can be added in quadraturewith the differential term (∂f/∂xi) de-
fining the sensitivity of the total uncertainty to each uncertainty compo-
nent. The second term describes the propagation of uncertainty terms
arising from correlated errors. This term sums the uncertainty compo-
nents from correlated errors for each pair of input variables (xi and xj)
found as the product of the sensitivity for both xi and xj and the covari-
ance between them, u(xi,xj). The factor of ‘2’ is included, as for each pair,
each is equally correlated with the other.

Eq. (1) can also be written in the form of Eq. (2) where the uncer-
tainty is expressed as the sum over all pairs of input variables and the
covariance term is expressed as the product of the standard uncertainty

in xi, written ui, in xj, written uj, and of the correlation of errors in xi and
xj, written rij.
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Eq. (2) applies fairly generically to any transformation y= f(xi,… ,xn)
for which the sensitivity parameters (∂ f/∂xi) are adequately constant
over the range xi−ui to xj+uj; it is a first order approximation. Because
we will use the results later, we illustrate the use of Eq. (2) for cal-
culating the uncertainty in themean SST from a number of observations.
If f ¼ ∑n

i¼1xi=n, where each xi is a contributing SST value, then the sen-
sitivity parameter is ∂f/∂xi=1/n giving:
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We can consider three limiting cases. First assume errors are uncor-
related between pixels. We can then put rij=δij, where δij=1 for i= j,
and δij=0 for i≠ j. In this case, the uncertainty in the mean is scaled by
the familiar ‘ 1ffiffi
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Second, consider the case rij=1, which means errors fully correlate
between contributing SSTs. Eq. (3) becomes
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implying u ¼ 1
n∑

n
i¼1ui i.e. the uncertainty is the average uncertainty of

the contributing SSTs.
Third, consider the case rij=δij+(1−δij)r - all SSTs have the same

error correlation with other SSTs. Substituting into Eq. (3) gives
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This formyields the previous results as special cases (r=0and r=1).
Constant rij for i≠ j is in practice unlikely to be exact for a real situation,
but may be a useful approximation in some cases, avoiding the need to
estimate rij for every contributing pair.

3. Uncertainty budget components

3.1. Uncorrelated effects

Randomerrors in SST estimation fromsatellite data arise fromnoise in
the satellite observations. The signal recorded by a typical radiometer is a
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