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Wetlands are valuable ecosystems for maintaining biodiversity, but are vulnerable to climate change and land
conversion. Despite their importance, wetland hydrology is poorly understood as few tools exist to monitor
their hydrologic regime at a landscape scale. This is especially true whenmonitoring hydrologic change at scales
below 30 m, the resolution of one Landsat pixel. To address this, we used spectral mixture analysis (SMA) of a
time series of Landsat satellite imagery to reconstruct surface-water hydrographs for 750 wetlands in Douglas
County, Washington State, USA, from 1984 to 2011. SMA estimates the fractional abundance of spectra
representing physically meaningful materials, known as spectral endmembers, which comprise a mixed pixel,
thus providing sub-pixel estimates of surfacewater extent. Endmembers forwater and sage steppewere selected
directly from each image scene in the Landsat time series, whereas endmembers for salt and wetland vegetation
were derived from amean spectral signature of selected dates spanning the 1984–2011 timeframe. This method
worked well (R2 = 0.99) for even small wetlands (b1800 m2) providing a wall-to-wall dataset of reconstructed
surface-water hydrographs for wetlands across our study area. We have validated this method only in semi-arid
regions. Further research is necessary to extend its validity to other environments. This method can be used to
better understand the role of hydrology inwetland ecosystems and as amonitoring tool to identify wetlands un-
dergoing abnormal change.

© 2016 Published by Elsevier Inc.
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1. Introduction

Wetlands are among the most biodiverse ecosystems in the world,
due largely to their dynamic hydrology (Mitsch & Gosselink, 2007).
The hydroperiod, whichwe define as the pattern of flooding and drying
within a wetland, is the most important determinant in the establish-
ment andmaintenance of specificwetland habitat types and the species
that they support (Babbitt, 2005; Correa-Araneda, Urrutia, Soto-Mora,
Figueroa, & Hauenstein, 2012; Mitsch & Gosselink, 2007; Tavernini,
Mura, & Rossetti, 2005). Despite the importance of the wetland hydro-
period, it is not well understood (Mitsch & Gosselink, 2007), in part be-
cause it is time-consuming and expensive to monitor changes in
wetland hydrology using field measurements. Landscape-level hydro-
period data are scarce because tracking changes in wetlandwater levels
over weeks and months requires the installation of expensive monitor-
ing equipment or visiting sites many times a year for several years
(Ryan, Palen, Adams, & Rochefort, 2014). However, without broad-
scale long-term hydroperiod data it is not possible to adequately

monitor changes in the hydrologic regime of wetlands to understand
general patterns across different wetland types and to distinguish the
difference between natural and abnormal changes to wetland hydrol-
ogy. Furthermore, without adequate baseline data of the wetland hy-
droperiod, it is not possible to understand how changes in
temperature and precipitation will impact the hydrology, structure
and function of wetlands under climate change (Arnell et al., 2001;
Poiani, Johnson, Swanson, & Winter, 1996; Ryan et al., 2014; Werner,
Johnson, & Guntenspergen, 2013).

1.1. Wetland definition

We define wetlands using the United States Army Corps of
Engineer's definition of wetlands as “those areas that are inundated or
saturated by surface or ground water at a frequency and duration suffi-
cient to support, and that under normal circumstances do support, a
prevalence of vegetation typically adapted for life in saturated soil con-
ditions.” (Environmental Laboratory, 1987) Shallow lakes and lake
fringes meet the above definition within our study area, and therefore,
this analysis includes both large and small waterbodies.
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1.2. Remote sensing of wetland surface water dynamics

Remote sensing has provided a usefulmeans to study the changes in
wetlands through spatially explicit, cost- and time-effective data
(Ozesmi & Bauer, 2002). However, mapping the hydroperiod of wet-
lands offers several challenges to remote-sensing analysts. The core
challenge is the trade-off between temporal and spatial resolution of re-
motely sensed imagery. Currently, no one sensor has both the temporal
and spatial resolution to detect the fine-scale patterns of wetland
change over time, particularly for small wetlands (Gallant, 2015;
Tiner, 2009; Wulder, Hall, Coops, Steven, & Franklin, 2014).

Landsat imagery with moderate spatial and temporal resolution has
widely been used for surfacewater mapping through hard classification
methods (sensu Foody, 2000), which classify pixels as either water or
non-water. Commonly used classification methods include thematic
classification, multi-band indices (e.g. normalized difference water
index, NDWI (McFeeters, 1996)), single band thresholding, and spectral
mixture analysis (Ozesmi & Bauer, 2002). These methods have been
successfully applied to map surface water changes of large lakes and
wetlands (Adams & Sada, 2014; Bryant & Rainey, 2002; Castaneda &
Herrero, 2005; Hui, Xu, Huang, Yu, & Gong, 2008; Liu et al., 2013;
Sener, Davraz, & Sener, 2010). However, wetlands that express changes
in surface water extent at fine scales (below 30 m – the resolution of 1
Landsat pixel) and small wetlands, whichwe define aswetlands smaller
than 5 ha, have received considerably less attention (Ryan et al., 2014).
This is an issue because inmany regions of theworld themajority of the
landscape is composed of small wetlands (Downing et al., 2014; Gilmer,
Work, Colwell, & Rebel, 1980; Halabisky, Moskal, & Hall, 2011).

For high resolutionmapping of wetlands analysts typically use high-
resolution aerial imagery (b1 m), but repeat coverage is lacking (Tiner,
1990). This has limited high-resolution remote sensing of wetlands to
detecting change between a few dates (Adams & Sada, 2014; Dyke &
Wasson, 2005; Hui et al., 2008; Liu et al., 2013; Murkin, Murkin & Ball,
1997; Niemuth, Estey, Reynolds, Loesch & Meeks, 2006). Although use-
ful, change detection of wetlands under these limitations does not pro-
vide enough detail for understanding patterns and dynamics of annual
and inter-annual wetland response,much less to determine ifmeasured
changes in the surface water extent represent natural year-to-year var-
iability, or abnormal changes in wetland hydrology. Even several dates
of aerial imagery cannot provide enough information to determine the
hydrologic regime of a particular wetland necessary for monitoring or
future climate modeling.

In order to address this limitation several researchers have used one
or more soft classification techniques such as multi-band indices and
single band tracking to predict sub-pixel surface water estimates of
Landsat imagery (Beeri & Phillips, 2007; Frohn et al., 2012;
Gómez-Rodríguez, Bustamante, & Díaz-Paniagua, 2010; Huang, Peng,
Lang, Yeo, & McCarty, 2014; Huang, Dahal, Young, Chander, & Liu,
2011; Reschke & Hüttich, 2014; Rover, Wylie, & Ji, 2010b). Soft classifi-
cationmethods do not assign a pixel to one class, but instead provide an
estimate of classmembership and can be used tomeasure the sub-pixel
surface water area through regression modeling and classification and
regression trees (Foody, 2000). However, these methods require a
large amount of training data from field data or higher resolution imag-
ery from the same time period and are not directly transferable to other
study areas (but see Rover, Wylie, & Ji, 2010a).

Spectral mixture analysis (SMA) is a physically based technique
which can be used to estimate the percent cover of surface water with-
out the need for extensive training data. SMA estimates the fractional
abundance of spectra representing physically meaningful materials,
known as spectral endmembers, which comprise a mixed pixel, thus
providing sub-pixel estimates of surface water extent (Adams, Smith,
& Johnson, 1986; Adams & Gillespie, 2006). While SMA provides sub-
pixel fractions of surface materials, it is commonly used to drive a clas-
sification by converting mixed pixels into water or non-water through
selection of a threshold value (Shanmugam, Ahn, & Sanjeevi, 2006).

Frohn et al. (2012) used SMA to identify wetlands at sub-pixels scales,
but did not use it to estimate the percent cover of surface water or
track changes to surface water through time.

While sub-pixel methods can identify the percent cover of surface
water they do not provide the location of surface water within a pixel,
which makes tracking change over time challenging. To remedy this
issue, researchers have either tracked changes of individual pixels
(Beeri & Phillips, 2007; Collins et al., 2014; Gómez-Rodríguez et al.,
2010; Reschke & Hüttich, 2014) or summarized changes for all pixels
within an entire landscape (Beeri & Phillips, 2007; Huang et al., 2014;
Huang et al., 2011). Table 1 summarizes the key papers that meet one
ormore of the criteria necessary for high resolutionmapping ofwetland
surface water dynamics.

What is almost entirely missing from the methods summarized in
Table 1 is the ability to track changes to individual wetlands and the
temporal detail tomonitor both seasonal and long-term changes inwet-
land hydrology. Only one study that achieved this was Gómez-
Rodríguez et al. (2010) in which the authors measured changes in the
flooding duration of wetlands by examining how pixel reflectance of
the near infrared band changed through time for over 800 temporary
ponds spanning a 23-year time period in the Doñana National Park,
Spain. Because the authors co-registered images to correct for small
pixel misalignments between image scenes they could track changes
of surface water extent for pixels within an individual wetland showing
a significant trend of hydroperiod shortening likely due to groundwater
depletion from agricultural irrigation. However, a challenge with track-
ing single pixels through time is the labor-intensive and imperfect pro-
cess of pixel-to-pixel registration and atmospheric correction for multi-
date analysis (Dai, 1998; Song, Woodcock, Seto, Lenney, & Macomber,
2001; Wyawahare, Patil, & Abhyankar, 2009). For some projects, it is
not feasible to perform these pre-processing steps on hundreds of
images.

We sought to develop a method that mapped surface water dy-
namics at temporal and spatial scales similar to Gómez-Rodríguez
et al. (2010), but with minimal pre-processing. Additionally, we
aimed to use this data to reconstruct individual wetland surface
water hydrographs, which chart the pattern of flooding within a
wetland over time. Here we use the term hydrograph to refer to tem-
poral changes in surface-water extent (area) within a wetland,
rather than temporal changes in water depth. This is due to the diffi-
culty of determining water depth from a pixel composed of multiple
surface materials.

The goal of this project was to develop a semi-automated tool to
map and monitor wetland dynamics for individual wetlands while still
covering a broad landscape. Specific objectives of this research were to:

1.) Develop a method with minimal pre-processing to estimate
surface-water extent for wetlands at scales below 30 m.

2.) Reconstruct individual wetland hydrographs from 1984 to 2011.
3.) Determine if hydrographs could be used to classify wetland types

and monitor wetland change over time.

2. Study area

We chose Douglas County, Washington (WA), located in the Colum-
bia Plateau ecoregion in the Northwest of the United States as our study
area (Fig. 1) as wetlands are abundant and representative of semi-arid
ecosystems common to Western North America. Douglas County is
4714 km2 in size with non-irrigated farming and ranching being the
dominant land uses. It is a semi-arid sage steppe ecosystem, receiving
an average of 29 cm of precipitation a year. Douglas County is bordered
by the Columbia River with a low elevation of 180 m near the river and
rising to an elevation of 1220m at the top of the plateau. In general, the
surface topography of the plateau is subtle and free from shadows re-
solved at the 30-m Landsat scale. Isolated, depressional wetlands are
the dominant wetland type. Wetlands are typically shallow and do not
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