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Widefield view (WFV) sensor onboard theChinese GF-1, thefirst satellite of the ChinaHigh-resolution EarthOb-
servation System, is acquiring multi-spectral data with decametric spatial resolution, high temporal resolution
and wide coverage, which are valuable data sources for environment monitoring. The objective of this study is
to develop a general and reliable fractional vegetation cover (FVC) estimation algorithm for GF-1 WFV data
under various land surface conditions. The algorithm is expected to estimate FVC from GF-1 WFV reflectance
data with spatial resolution of 16 m and temporal resolution of four dates. The proposed algorithm is based on
training back propagation neural networks (NNs) using PROSPECT + SAIL radiative transfer model simulations
for GF-1WFV canopy reflectance and corresponding FVC values. Green, red and near-infrared bands' reflectances
of GF-1WFV data are the input variables of the NNs, as well as the corresponding FVC is the output variable, and
finally 842,400 simulated samples covering various land surface conditions are used for training the NNs. A case
study in Weichang County of China, having abundant land cover types, was conducted to validate the perfor-
mance of the proposed FVC estimation algorithm for GF-1WFV data. The validation results showed that the pro-
posed algorithm worked effectively and generated reasonable FVC estimates with R2 = 0.790 and root mean
square error of 0.073 based on the field survey data. The proposed algorithm can be operated without prior
knowledge on the land cover and has the potential for routine production of high quality FVC products using
GF-1 WFV surface reflectance data.
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1. Introduction

Fractional vegetation cover (FVC),which refers to the fraction of green
vegetation seen from the nadir, is an important parameter for character-
izing the land surface vegetation conditions (Baret et al., 2013; Gitelson,
Kaufman, Stark, & Rundquist, 2002; Jia, Liang, Liu, et al., 2015; Zhang,
Liao, Li, & Sun, 2013). FVC is required for many weather prediction
models, regional and global climate models, hydrological models and
many other land surface models, and has been extensively used in appli-
cations of agriculture, soil erosion risk evaluation, drought monitoring,
environmental assessment (Gutman & Ignatov, 1998; Matsui, Lakshmi,
& Small, 2005; Roujean & Lacaze, 2002; Zhang et al., 2010). Therefore,
accurate and timely estimation of FVC on a large scale using high spatial
resolution remote sensing data is of great significance for many land sur-
face related applications. For example,water and soil conservation assess-
ments require high spatial and temporal resolution FVC data (Niu, Du,

Wang, Zhang, & Chen, 2014), and the rapid FVC estimates from high
spatial resolution remote sensing data could be valuable for such similar
applications. The Chinese GF-1 is the first satellite of the Major National
Science and Technology Project of China, known as the China high-
resolution earth observation system. The GF-1 wide field view (WFV)
cameras acquire data with high spatial resolution, wide coverage and
high revisit frequency (Table 1), which are highly valuable data sources
for dynamic monitoring of land surface FVC on a large scale. However,
there is limited literature reporting the general algorithm for FVC estima-
tion from GF-1 WFV data. Therefore, exploring the application potential
and developing the land surface FVC monitoring methods are urgently
needed.

Currently, many FVC estimation algorithms using remote sensing
data have been developed, which mainly include empirical methods,
pixel unmixing models, and physical model based methods (Baret
et al., 2007; Bioucas-Dias et al., 2012; Guerschman et al., 2009; Jiapaer,
Chen, & Bao, 2011; Liang, Li, & Wang, 2012; Xiao & Moody, 2005). The
empirical methods are based on the statistical relationships between
FVC and vegetation indices or reflectance of specific wavebands (Xiao
& Moody, 2005). The normalized difference vegetation index (NDVI),
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an index calculated from reflectance in the red and near-infrared (NIR)
wavebands, is themost frequently used vegetation index for developing
empirical FVC estimation models (Jiapaer et al., 2011). Moreover, some
other vegetation indices calculated from visible, NIR and short-wave
infrared wavebands, such as enhanced vegetation index (EVI), visible
atmospherically resistant index (VARI) and modified three-band maxi-
mal gradient difference vegetation index (MTGDVI), are also proposed
for FVC estimation due to the fact that NDVI may present larger uncer-
tainties in estimating FVC for very dense canopies or open canopies
with light or dark bare ground (Gitelson et al., 2002; Jiang, Huete,
Didan, & Miura, 2008; Jiapaer et al., 2011). The empirical methods are
computationally efficient for large remote sensing datasets and can
provide as accurate estimates of FVC in comparison to deterministic or
physically basedmodels in regional scales based on the accurate param-
eterization of the empirical models. However, a large amount of ground
measured training samples covering various vegetation types and
growth conditions are required for accurately parameterizing the
empirical models. In addition, one empirical model is greatly expected
to estimate FVC for a specific vegetation type in the specific region,
because the quantitative empirical relationship between FVC and vege-
tation indices or bands' reflectance is varyingwith vegetation types and
regions. For example, Graetz's linear regressionmodel was only suitable
for sparse grassland and his nonlinear regressionmodel was specific for
degraded grassland (Graetz, Pech, Gentle, & O'Callaghan, 1986). There-
fore, though there are somepublically available field survey FVC records
across most continents (Camacho, Cernicharo, Lacaze, Baret, & Weiss,
2013; Held, Phinn, Soto-Berelov, & Jones, 2015) that can be used to
build empirical models, the amount of the records is not enough for ac-
curately parameterizing the empirical models which need samples cov-
ering all situations encountered on the Earth's surface. Based on the
actual situations, it is costly and not a good choice for developing an em-
pirical FVC estimation algorithm of a specific sensor.

A pixel unmixing model estimates FVC at the sub-pixel level, with
the assumption that each pixel is composed of several components
and considering the proportion of the vegetation components as the
FVC (Jiapaer et al., 2011; Jimenez-Munoz et al., 2009; Phinn, Stanford,
Scarth, Murray, & Shyy, 2002). The dimidiate pixel model in the family
of pixel unmixing models has been widely used for FVC estimation
and has achieved many reliable results at the regional scales (Qi et al.,
2000; Wu, Li, Yon, Zhou, & Yan, 2004). For example, GF-1 WFV data
are evaluated to estimate FVC using dimidiate pixel model in the
Beijing-Tianjin-Hebei region (Zhan et al., 2014). However, a substantial
challenge in pixel unmixing model is how to determine endmembers
and the spectral response of endmembers because the land surface is
very complex, especially for developing the large-scale pixel unmixing
model. Therefore, pixel unmixing models are also not optimal for oper-
ationally estimating FVC from GF-1 WFV data.

Physical model based methods are based on the inversion of canopy
radiative transfermodels, which allow to simulate the physical relation-
ships between the vegetation canopy spectral reflectance and FVC (Jia,
Liang, Liu, et al., 2015). The physical model based methods establish
FVC estimation algorithms that consider more factors and elucidate
the physical relationship between remote sensing signal and FVC.
Thus, the physical model based methods are widely applicable for FVC
estimation in large scale. However, the direct inversion of radiative
transfer models is very difficult due to the complexity of the models.
Usually, neural networks (NNs) and lookup table methods are the two

typical alternative methods for indirect inversion of physical models,
and belong to the group of physical model based FVC estimation algo-
rithms. NNs method is based on training datasets simulated by the
physical models, and become one of the most important physically
based FVC estimation algorithms for their computational efficiency
and good performance (Baret et al., 2006; Roujean & Lacaze, 2002).
NNs trained over radiative transfer model simulations have been
applied with success to estimate FVC from several sensors, leading to
several operational FVC production algorithms, such as the POLDER
FVC product, which uses NNs and the Kuusk model (Roujean & Lacaze,
2002) and the MERIS and CYCLOPES FVC products, which use NNs and
the PROSPECT + SAIL model (Baret et al., 2007; García-Haro,
Camacho, & Meliá, 2008). Therefore, based on the reality of work in
the field of FVC estimation using remote sensing data, the NN inversion
of physical methods is a potentially accurate choice for operationally
estimating FVC from GF-1 WFV data.

The objective of this study is to develop a general and reliable FVC
estimation algorithm for GF-1 WFV reflectance data under various
land surface conditions. The algorithm is expected to operationally pro-
duce high quality FVC data fromGF-1WFV surface reflectance datawith
spatial resolution of 16 m and temporal resolution of four dates. To
achieve this objective, we firstly generate a learning dataset using the
PROSPECT + SAIL model with large range changes of input parameters
to cover various land surface conditions, and then train the NNs for FVC
estimation using GF-1 WFV reflectance data. Finally, a case study is
conducted to validate the effectiveness of the proposed FVC estimation
algorithm for GF-1 WFV data.

2. Methodology

The proposed FVC estimation algorithm for GF-1 WFV data was
based on a radiative transfer model inversion. The neural networks
approach was selected for the inversion because it was known to be
computationally very efficient. Additionally, it was indicated that NNs,
when trained over radiative transfer model simulations, could provide
accurate surface parameters estimations because of their efficient inter-
polation capacity (Baret et al., 2007; Fang & Liang, 2005; Leshno, Lin,
Pinkus, & Schocken, 1993). Therefore, the FVC estimation algorithm
development for GF-1 WFV data consisted of generating a learning
dataset using a radiative transfer model, training the NNs, and applying
the NNs to estimate FVC from GF-1 WFV data.

2.1. The Chinese GF-1 WFV data

TheGF-1 satellitewas launched from Jiuquan Satellite Launch Centre
(Gansu province, China) in April 2013, and a large amount of data have
been obtained since then. GF-1 satellite is in a sun-synchronous orbit at
an altitude of 645 km, and carries two panchromatic/multi-spectral
(P/MS) and four wide field view (WFV) cameras. The GF-1 WFV sen-
sor observes solar radiation reflected by the Earth in four spectral chan-
nels distributed in the visible andNIR spectral domain ranging from450
to 890 nm. GF-1 WFV data have a spatial resolution of 16 m and swath
width of 800 km with four cameras combined, as well as their high
frequency revisit time of four days (Wei et al., 2015). The technical spec-
ification for GF-1WFV cameras is shown in Table 1. The high-frequency
revisit time, wide coverage ability and decametric spatial resolution of
GF-1 WFV data make them highly suitable data sources for dynamic

Table 1
Technical specification of GF-1 WFV cameras.

Payloads Bands No. Spectral range (μm) Spatial resolution Swath width (km) Repetition cycle (day) Local time of descending node

WFV 1 0.45–0.52 16 800 (four cameras combined) 4 10:30 AM
2 0.52–0.59
3 0.63–0.69
4 0.77–0.89
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