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Radiative transfer models have long been used to characterize the foliar content at the leaf and canopy levels.
However, they still do not apply well to close-range imaging spectroscopy, especially because directional effects
are usually not taken into account. For this purpose, we introduce a physical approach to describe and simulate
the variation in leaf reflectance observed at this scale. Two parameters are thus introduced to represent (1) spec-
ular reflection at the leaf surface and (2) local leaf orientation. The model, called COSINE (ClOse-range Spectral
ImagiNg of lEaves), can be coupled with a directional–hemispherical reflectance model of leaf optical properties
to relate themeasured reflectance to the foliar content. In this study,we show that,when combiningCOSINEwith
the PROSPECT model, the overall PROCOSINE model allows for a robust submillimeter retrieval of foliar content
based on numerical inversion and pseudo-bidirectional reflectance factor hyperspectral measurements.
The relevance of the added parameters is first shown through a sensitivity analysis performed in the visible and
near-infrared (VNIR) and shortwave infrared (SWIR) ranges. PROCOSINE is then validated based on VNIR and
SWIR hyperspectral images of various leaf species exhibiting different surface properties. Introducing these
two parameters within the inversion allows us to obtain accurate maps of PROSPECT parameters, e.g., the chlo-
rophyll content in the VNIR range, and the equivalent water thickness and leaf mass per area in the SWIR
range. Through the estimation of light incident angle, the PROCOSINE inversion also provides information on
leaf orientation, which is a critical parameter in vegetation remote sensing.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Due to the strong interactions occurring between vegetation and the
incoming optical radiation through absorption and scattering processes,
hyperspectral remote sensing from satellites and aircrafts provides crit-
ical information to assess the spatial and temporal variabilities of vege-
tation status from local to global scales. This has led to a number of
agricultural, environmental and ecological applications such as the re-
trieval of leaf pigments (Ustin et al., 2009; Zarco-Tejada,Miller,Morales,
Berjón, & Aguera, 2004), the early detection of leaf diseases (Mahlein
et al., 2013) or the mapping of forest biodiversity (Féret & Asner,
2014). As hyperspectral cameras are now becoming more affordable,
close-range remote sensing data are also increasingly available to the
scientific community. Compared with air- and satellite-borne data,

they generally offer a submillimeter or millimeter spatial resolution,
and they can be acquired at a higher temporal frequency, which is par-
ticularly interesting for precision agriculture. For example, these data
can beused to identify plant pigments (Blackburn, 2007), freezing stress
(Nicotra, Hofmann, Siebke, & Ball, 2003) or leaf diseases (Mahlein et al.,
2013), each ofwhich is of tremendous importance to followup the plant
physiological status. These images are generally processed by applying
statistically-basedmethods to estimate various leaf biochemical proper-
ties (Jay, Hadoux, Gorretta, & Rabatel, 2014; Ji-Yong et al., 2012; Nicotra
et al., 2003; Vigneau, Ecarnot, Rabatel, & Roumet, 2011). However, at
this scale, a proper physical interpretation based on radiative transfer
modeling is needed to describe the interactions between light and veg-
etation, especially for a spatially- and temporally-resolved quantifica-
tion of pigments (Blackburn, 2007).

Vegetation radiative transfer models are physically-based and simu-
late light propagation within leaves and/or canopies, e.g., as a function
of leaf biochemical constituents, leaf anatomy or canopy structure.
Whenever possible, model inversion allows for the retrieval of the var-
iables of interest, generally using iterative optimization, look-up tables,
statistical methods or machine learning algorithms.
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At the leaf level, these models range from simple plate models, to
ray-tracing, radiosity and stochastic models that are computationally
more difficult to invert (Dorigo et al., 2007). For instance, PROSPECT
(Jacquemoud & Baret, 1990) is based on the generalized plate model,
and is particularly well suited to estimate leaf biochemical constituents
(e.g., chlorophyll content, water content and leaf mass per area) based
on spectral measurements in the optical domain. The main reasons for
the popularity of PROSPECT are its accuracy, its computational efficiency
(resulting in fast iterative model inversion) and free distribution.

At the canopy level, various approaches of different complexities
have been developed for radiative transfer modeling, e.g., turbid
medium approaches (Verhoef, 1984), geometrical approaches (Chen &
Leblanc, 1997) or the combination of both (Gastellu-Etchegorry,
Demarez, Pinel, & Zagolski, 1996). Most of these models allow the can-
opy reflectance to be modeled as a function of parameters related to
canopy structure (such as leaf area index or leaf inclination distribution
function), leaf optical properties and sun-sensor geometry.

However, leaf and canopy radiative transfer models do not apply
well to close-range imaging spectroscopy. For example, at the leaf
level, the directional–hemispherical reflectance and transmittance sim-
ulated by PROSPECT (Jacquemoud & Baret, 1990) are usually measured
with an integrating sphere,whose implementation is difficult (if not im-
possible) for every single pixel of hyperspectral images. As a result,
PROSPECT cannot be inverted based on directional reflectance data as
retrieved by a close-range hyperspectral camera, unless it is assumed
that leaves are Lambertian (Buddenbaum&Hill, 2015) and in fully hor-
izontal position, which is an unrealistic hypothesis. Indeed, in most
cases, leaf reflectance exhibits some anisotropy (Bousquet, Lachérade,
Jacquemoud, &Moya, 2005; Comar et al., 2012) and thus varies with re-
spect to illumination and viewing angles. Furthermore, variation in leaf
orientation prevent from achieving a proper reflectance correction for
every pixel, because the reference surface used for reflectance correc-
tion is generally not submitted to the same local illumination conditions
than leaf material.

At the canopy level, most radiative transfer models have to be ap-
plied to mixed pixels (containing both soil and leaf materials), for
which effects of leaf composition, canopy structure, soil properties and
viewing/illumination angles are integrated into a single spectrum. Can-
opy models are thus well suited for ground-based spectroradiometric
measurements, as well as for air- and satellite-borne hyperspectral
measurements, all of them being usually characterized by a spatial res-
olution coarser than onemeter (Colombo et al., 2008; Schlemmer et al.,
2013; Zarco-Tejada, Rueda, & Ustin, 2003). However, most canopy
models are not suitable for simulating hyperspectral data characterized
by a higher spatial resolution (up to submillimeter level) for which the
assumption of mixed pixel does not hold.

In this study, we propose a physically-based model, called COSINE
(ClOse-range Spectral ImagiNg of lEaves), that describes the additional
spectral variability induced by directional effects and variation in leaf
orientation. Combining COSINE with a leaf directional–hemispherical
reflectancemodel such as PROSPECT allows the simulation of leaf reflec-
tance according to our experimental conditions: submillimetric spatial
resolution and a single light source assumed to be directional.When ap-
plied in inverse mode to close-range hyperspectral images, the overall
PROCOSINE model enables the simultaneous retrieval of PROSPECT pa-
rameters (e.g., chlorophyll and water contents), bidirectional effects
and leaf angle with respect to the light source.

The COSINE theory is described in Section 2. After recalling the nec-
essary radiometric definitions, we develop a physically-based analytic
expression of the reflectance quantity retrieved using close-range imag-
ing spectroscopy. This expression is then related to PROSPECT to explain
variations in leaf biochemistry and leaf anatomy. In Section 3, we pres-
ent the data sets used in this article as well as details about model vali-
dation and sensitivity analysis. Results are presented and discussed in
Section 4, and we finally draw some conclusions and perspectives in
Section 5.

2. Theory

2.1. Radiometric considerations

2.1.1. Definitions
The definitions and notations of themain physical quantities used in

this article and summarized in Table 1, are based on the initial terminol-
ogy of Nicodemus, Richmond, Hsia, Ginsberg, and Limperis (1977),
which has later been reviewed by Schaepman-Strub, Schaepman,
Painter, Dangel, and Martonchik (2006).

The spectral radiance L is the radiant flux in a beam per unit wave-
length, per unit area and per unit solid angle, and is expressed in the
SI unit [W·sr−1·m−2·nm−1]. This is the physical quantity measured
by a hyperspectral imaging sensor after spectral calibration. The spectral
irradiance E is the radiant flux in a beam per unit wavelength and per
unit area and is expressed in [W·m−2·nm−1].

One of the main physical quantities used to describe angular
patterns of reflected light is the bidirectional reflectance distribution
function (BRDF) expressed in [sr−1]. It describes how a parallel beam
of incident light from one direction in the hemisphere is reflected into
another direction in the hemisphere:

f r θs; θv;φv;λð Þ ¼ dLr θs; θv;φv;λð Þ
dEi θs;λð Þ ð1Þ

where subscripts i and r refer to incoming and reflected lights re-
spectively, θs and θv are respectively the illumination and viewing zenith
angles, and φv is the viewing azimuth angle relatively to the illumina-
tion azimuth angle (see Fig. 1 for angle representation). The BRDF
being the ratio of two infinitesimal quantities, it cannot theoretically
be measured. However, its integration over the corresponding solid
angles allows the derivation of many other measurable physical
quantities.

Usually, the reflectance correction process does not consist in retriev-
ing directly the reflectance (defined as the ratio of the leaving radiant
exitance to the incident irradiance), but rather follows the definition of
a reflectance factor. In the specific case of single illumination and viewing
directions, the bidirectional reflectance factor (BRF, denoted by R) is given
by the ratio of the radiant flux dLr reflected from the area element dA to
the radiant flux dLr

id reflected from an ideal and diffuse surface of the
same area dA under identical illumination and viewing geometries. It is

Table 1
Main parameters and acronyms.

Parameter Definition [unit]

bspec Specular term [unitless]
Cab Chlorophyll a + b content [μg·cm−2]
Cbp Brown pigment content [unitless]
Ccx Carotenoid content [μg·cm−2]
Cm Leaf mass per area [g·cm−2]
Cw Equivalent water thickness [cm]
E Spectral irradiance [W·m−2·nm−1]
fr Bidirectional reflectance distribution function (BRDF) [sr−1]
L Spectral radiance [W·sr−1·m−2·nm−1]
λ Wavelength [nm]
N Leaf structure parameter [unitless]
φl Difference between illumination and leaf normal azimuth angles [°]
φv Difference between illumination and viewing azimuth angles [°]
R Bidirectional reflectance factor (BRF) [unitless]
Rhsi Pseudo-bidirectional reflectance factor [unitless]
ρ Directional–hemispherical reflectance (DHR) [unitless]
θi Light incident angle (angle between the light source and the normal to

the leaf) [°]
θl, θv, θs Leaf normal, viewing and illumination zenith angles [°]
ϑ PROCOSINE parameters
ϑdhr Parameters of the leaf DHR model

221S. Jay et al. / Remote Sensing of Environment 177 (2016) 220–236



Download English Version:

https://daneshyari.com/en/article/6345445

Download Persian Version:

https://daneshyari.com/article/6345445

Daneshyari.com

https://daneshyari.com/en/article/6345445
https://daneshyari.com/article/6345445
https://daneshyari.com

