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Smallholder farms dominate in many parts of the world, particularly Sub-Saharan Africa. These systems are
characterized by small, heterogeneous, and often indistinct field patterns, requiring a specialized methodology
to map agricultural land cover. Using a variety of sites in South Africa, we present a new approach to mapping
agricultural fields, based on efficient extraction of a vast set of simple, highly correlated, and interdependent
features, followed by a random forest classifier. We achieved similar high performance across agricultural
types, including the spectrally indistinct smallholder fields as well as the more easily distinguishable commercial
fields, and demonstrated the ability to generalize performance across large geographic areas. In sensitivity
analyses, we determined multi-temporal information provided greater gains in performance than the addition
of multi-spectral bands available in DigitalGlobe Worldview-2 imagery.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Improving the capacity to monitor the spatial distribution of agricul-
ture, particularly among smallholder farmers, is critical to increasing
agricultural productivity and food security in many parts of the world.
Smallholder agriculture, which dominates in Sub-Saharan Africa and
other world regions, features rainfed production for household con-
sumption and use of family labor and minimal technology (Altieri &
Koohafkan, 2008; Eastwood, Lipton, & Newell, 2010; Gollin, 2014;
Morton, 2007). These systems are also characterized by small, heteroge-
neous, and often indistinct field patterns (Estes et al., 2016; Fritz & See,
2008; Lobell, 2013; See et al., 2015). The prevalence of smallholder
farms highlights the need for a specialized methodology to monitor ag-
riculture across farming types, including both smallholder and
commercial.

Of the regions where smallholder agriculture dominates, Sub-
Saharan Africa is the most important, due to its geographic size and
status as a potential center of agricultural growth in the coming de-
cades. Of all farms in Sub-Saharan Africa, 80% are <2 ha and the mean
farm size of 1.6 ha is significantly smaller than most world regions
(Table 1) (von Braun, 2004; FAO, 1997; IFAD and UNEP, 2013; Lowder,
Skoet, & Singh, 2014; Nagayets, 2005). Increasing agricultural produc-
tivity is crucial in Sub-Saharan Africa, because its population is expected
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to double by 2050 (Haub & Kaneda, 2013). The population remains pre-
dominantly rural despite recent urbanization (Masters et al., 2013), and
60% of the workforce is employed in agriculture (AfDB et al., 2014). As
the population grows, agricultural field sizes are driven down and
farmers are pushed onto marginal lands. As a result, growing climate
variability, characterized by less frequent and more intense rain events,
increases farmers' vulnerability to food insecurity (Davidson et al.,
2003; Jayne, Chamberlin, & Headey, 2014; Masters et al., 2013; Oba,
Post, & Stenseth, 2001; Thornton, Jones, Alagarswamy, & Andresen,
2009; Thornton, Jones, Ericksen, & Challinor, 2011; World Bank,
2013). As smallholder field sizes decrease, large-scale international
land acquisitions and government-sponsored agricultural growth corri-
dors promote consolidation of remaining farmland into commercial en-
terprises (Cotula & Vermeulen, 2009; Davis, D'Odorico, & Rulli, 2014;
Gollin, 2014; Nogales, 2014; Rulli & D'Odorico, 2014; Rulli, Saviori, &
D'Odorico, 2013). Efforts to monitor agricultural change on the ground
are confounded by a widespread shortage of agricultural data in Sub-
Saharan Africa, in part due to limited government capacity (Alliance
for a Green Revolution in Africa (AGRA), 2013; Carletto, Jolliffe, &
Banerjee, 2013; Glassman et al., 2014; IFAD and UNEP, 2013; World
Bank, 2013). Therefore, an accurate accounting of agricultural land
cover, across both smallholder and commercial farming, is needed to
track and promote food security in Sub-Saharan Africa.

In data-sparse regions, satellite imagery provides alternative means
to monitor agriculture. However, land cover data sets derived from re-
mote sensing contain large uncertainties regarding the total area as
well as the spatial distribution of agriculture (Estes et al., 2016; Fritz &
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Table 1
Estimated farm sizes of selected world regions (von Braun, 2004; FAO, 1997;
Nagayets, 2005).

World region Average farm size (hectares)
Africa 1.6
Asia 1.6
Western Europe 27.0
Latin America and Caribbean 67.0
North America 121.0

See, 2008; Fritz et al., 2011; Siebert, Portmann, & D6ll, 2010). Moreover,
readily available data sets, such as MODIS (250 m) and Landsat (30 m),
lack sufficient spatial resolution to study smallholder fields, which are
often smaller than 1 ha (100 m x 100 m) (Estes et al., 2016; Jain,
Mondal, DeFries, Small, & Galford, 2013; Lobell, 2013). For example, a pre-
vious study using Landsat imagery to identify agricultural fields in the
United States struggled with small, irregular fields of <1.5 ha, though
these conditions represented only a minority of studied fields (Yan &
Roy, 2014).

High-resolution satellite imagery (<2 m) provides the necessary
detail to observe smallholder agriculture and is becoming increasingly
available and affordable (Estes et al., 2016; Fritz et al., 2015; Hayes,
Miller, & Murphy, 2014; Jain et al., 2013; Lobell, 2013; See et al,,
2015). As coverage improves, automated classification algorithms are
used to extract actionable data from images. Prior efforts to automatical-
ly classify agricultural fields using high-resolution imagery have strug-
gled due to (1) the nature and appearance of smallholder agriculture,
(2) the properties of high-resolution imagery itself, and (3) the design
of classification algorithms.

First, the high spatial variability in land cover poses a classification
challenge, particularly among smallholder agricultural fields, which
are small and irregularly shaped (Palm et al., 2010). Smallholder fields
are less visually defined, exhibiting indistinct boundaries between
neighboring fields as well as ambiguity between fields and natural veg-
etation (Estes et al., 2016; Fritz & See, 2008; Lobell, 2013; See et al.,
2015). They also exhibit more variability in spectral and phenological
signatures, due to rainfed farming, sub-optimal management, low
cropping intensity, fallowing, abandonment, and the inclusion of large
trees within fields (Jain et al., 2013; Mayes, Mustard, & Melillo, 2015;
Siebert et al., 2010; Vintrou et al., 2012) (Fig. 1). Thus, these conditions
highlight the need for a specialized methodology for smallholder
agriculture.

Second, the level of detail increases in high-resolution imagery,
which raw spectral values or simple features have difficulty describing.
In high-resolution imagery, land cover classes have lower inter-class
and higher intra-class spectral variability, creating ambiguities in classi-
fication (Lu & Weng, 2007; Tokarczyk, Wegner, Walk, & Schindler, 2013,
2015). Variability also increases with image mosaicking, which is often
necessary due to lower collection frequency of high-resolution imagery
(Estes et al., 2016; Hayes et al., 2014). Previous efforts to handle in-
creased detail in high-resolution imagery have focused on expanding
the feature space by manually handcrafting higher order features suit-
able to a specific application. Features that capture textural and
contextual information (e.g. grey-level co-occurrence matrices (GLCM),
filter bank responses, and textons) have been found to improve classifica-
tion accuracy over spectral information alone, but their use has been lim-
ited by their complexity and high computational cost (Butusov, 2003;
Kurosu, Yokoyama, Fujita, & Chiba, 2001; Leung & Malik, 2001; Lu &
Weng, 2007; Podest & Saatchi, 2002; Rao et al., 2002; Schmid, 2001; Sha-
ban & Dikshit, 2001; Shotton, Johnson, & Cipolla, 2008; Tokarczyk et al.,
2013, 2015). Incorporating additional multi-spectral bands in features,
either as raw inputs or calculated image transformations like vegetation
indices, may also increase accuracy, but without selection of the most dis-
criminative bands, this approach is limited by high band correlation (Lu &
Weng, 2007; Mausel, Kramber, & Lee, 1990; Thenkabail, Enclona, Ashton,

Legg, & De Dieu, 2004). Multi-temporal imagery has also been found to
increase accuracy, especially for agriculture, by capturing details about
phenological profiles and filling in missing data (Duveiller & Defourny,
2010; Guerschman, Paruelo, Bella, Giallorenzi, & Pacin, 2003; Liu,
Takamura, Takeuchi, & Shao, 2002; Lu & Weng, 2007; Oetter, Cohen,
Berterretche, Maiersperger, & Kennedy, 2001). Overall, extracting more
features derives greater information from high-resolution imagery. How-
ever, classification algorithms struggle with the expanded feature space,
necessitating the use of feature selection to determine the most useful
ones, often in a separate stage prior to classification (Hughes, 1968; Lu
& Weng, 2007; Price, Guo, & Stiles, 2002).

Third, a classification algorithm must efficiently handle the vast fea-
ture spaces of highly correlated and interdependent features required to
adequately describe smallholder agriculture in high-resolution imagery
(Hughes, 1968; Lu & Weng, 2007; Price et al., 2002). An algorithm must
also resist overfitting to training data and have high generalization per-
formance to classify large expanses of new imagery (Mascaro et al.,
2014). Previous efforts have found that tracking land cover changes
over time lends itself to a supervised classification approach, in which
a classifier is initially trained to identify prescribed classes with labelled
data and then repeatedly deployed on a time series of images (Mclver &
Friedl, 2001). Yet supervised classification is often deemed a local ap-
proach for small areas, with a reputation of being difficult to repeat
over large areas (Mayes et al., 2015). Within supervised classification,
non-parametric classifiers are increasingly preferred, due to their ability
to handle extremely large feature spaces and data sets, robustness to
outliers and noise, and outperformance of parametric classifiers in com-
plex landscapes (Adam, Mutanga, Odindi, & Abdel-Rahman, 2014; De
Fries, Hansen, Townshend, & Sohlberg, 1998; Friedl, Brodley, & Strahler,
1999; Gislason, Benediktsson, & Sveinsson, 2006; Gopal, Woodcock, &
Strahler, 1999; Ham, Chen, Crawford, & Ghosh, 2005; Hayes et al.,
2014; Lu & Weng, 2007; Mclver & Friedl, 2001; Paola & Schowengerdt,
1995; Rodriguez-Galiano et al., 2011). Furthermore, classifiers with
probabilistic output, as opposed to hard classifications, are gaining pop-
ularity in remote sensing for highlighting the spatial variation in classi-
fication quality and confidence, which is crucial for utilizing results in
decision making (Liu, Gopal, & Woodcock, 2004; Lu & Weng, 2007;
Mclver & Friedl, 2001). Probabilistic output can also be post-processed
in a variety of ways, ranging from simple thresholding for obtaining
hard classifications to image segmentation and object detection.

This study develops a methodology to differentiate heterogeneous
agricultural land cover in high-resolution imagery of Sub-Saharan
Africa that is effective across a range of agricultural types, including
the small, irregular fields of the dominant smallholder class. In a super-
vised classification approach, we utilize techniques from computer
vision and machine learning, two fields that are increasingly used in re-
mote sensing analyses as high-resolution imagery becomes readily
available. Computer vision provides the means to detect, recognize,
and track complex objects in images, whereas machine learning enables
assimilation of vast quantities of data (Szeliski, 2010), a powerful com-
bination for deriving actionable data from high-resolution imagery that
generalizes across large areas.

First, to address the problems of adequately describing the small,
irregular fields of smallholder agriculture and handling the great level
of detail in high-resolution imagery, we efficiently extract a unique set
of many simple, highly correlated, and interdependent features. Second,
we utilize a supervised, non-parametric machine learning classifier to
handle the vast feature space and provide probabilistic output of the
likelihood that pixels belong to agricultural fields. We assess our classi-
fication accuracy using the metrics of receiver operating characteristic
(ROC) curves and the related area under the ROC curve (AUC), finding
similar high performance (AUC > 0.90) across agriculture types, includ-
ing smallholders. We also investigate the relative roles of multi-
temporal and multi-spectral information, given the data limitations of
high-resolution satellite imagery in Sub-Saharan Africa, and find that
multi-temporal imagery contributes to greater performance gains.
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