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Recent studies showed that machine learning (ML) algorithms (e.g., artificial neural network (ANN) and support
vector machine (SVM)) reasonably reproduce passive microwave brightness temperature observations over
snow-covered land as measured by the Advanced Microwave Scanning Radiometer (AMSR-E). However, these
studies did not explore the sensitivities of the ML algorithms relative to ML inputs in order to determine the
behavior and performance of each algorithm. In this current study, normalized sensitivity coefficients are
computed to diagnose ML performance as a function of time and space. The results showed that when using
the ANN, approximately 20% of locations across North America are relatively sensitive to snowwater equivalent
(SWE). However, more than 65% of locations in the SVM-based brightness temperature (Tb) estimates are
sensitive relative to perturbations in SWE at all frequency and polarization combinations explored in this
study. Further, the SVM-based results suggest the algorithm is sensitive in both shallow and deep SWE, SWE
with and without overlying forest canopy, and during both the snow accumulation and snow ablation seasons.
Therefore, these findings suggest that compared with the ANN, the SVM could potentially serve as a more
efficient and effective measurement model operator within a Tb data assimilation framework for the purpose
of improving SWE estimates across regional- and continental-scales.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction and motivation

Snow is a critical component in the global energy and hydrologic
cycle due to its control ofmass and energy exchanges at the land surface
(Robinson, Dewey, & Heim, 1993). However, direct quantification
(i.e., in-situ measurements) of the mass of snow (a.k.a., snow water
equivalent (SWE)) is significantly complicated by spatial and temporal
variability in snow processes. Therefore, space-borne passive micro-
wave (PMW) SWE retrieval products have been employed to help fill
observational gaps between ground-based sensors to better estimate
SWEat the global scale based on the relationship between themeasured
electromagnetic response and the physical characteristics of SWE.
Unfortunately, the highly nonlinear nature of the relationship is non-
trivial to establish and numerous limitations exist that restrict the
extensive application of PMW-based SWE estimates.

There are typically fourways to estimate SWE from space-borne sen-
sors. Onemethod is tomerge relatively coarse, space-borne observations
with in-situ measurements of finer resolution via spatial interpolation

(Cao, Yang, & Zhu, 2008). However, this method is adversely impacted
by sparse spatial coverage of in-situ observations, particularly in regions
near the Arctic Circle (Takala et al., 2011), coupled with strong sub-grid
scale snow variability in complex terrain (Foppa, Stoffel, & Meister,
2007). The second technique – space-borne PMW SWE retrieval –
inverts (or retrieves) model states variables from the measured bright-
ness temperature (Tb, defined as the physical temperature of an object
times its emissivity) at specific frequencies by calibrating regression
coefficients within the algorithm (Chang, Foster, & Hall, 1987;
Goodison & Walker, 1994; Kelly, Chang, Tsang, & Foster, 2003; Chang,
Foster, & Hall, 1996; Kelly, 2009). These satellite-based SWE retrieval
models are often affected by errors arising from meteorological fields
(e.g., data aggregation, disaggregation, extrapolation and interpolation
(Blöschl & Sivapalan, 1995)) used to force land surface models.
They are also affected by significant uncertainties associated with
snow stratigraphy (Derksen, Walker, & Goodison, 2005), snow grain
size (Armstrong, Chang, Rango, & Josberger, 1993), depth hoar layer
(Brucker, Royer, Picard, Langlois, & Fily, 2011; Hall, 1987; Hall, Chang,
& Foster, 1986; Foster et al., 2005), ice crusts (Rees, Lemmetyinen,
Derksen, Pulliainen, & English, 2010), lake fraction effects (Derksen
et al., 2010), and snow morphology (Kelly et al., 2003), especially in
densely-vegetated regions (Tedesco & Narvekar, 2010; Derksen et al.,
2005) with relatively deep snow (Clifford, 2010).
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In an effort to overcome many of the limitations highlighted above,
the third alternative involvesmergingmeasurements of remote sensing
observations with estimates from physically-based models (Reichle,
2008; Forman, Reichle, & Rodell, 2012; Reichle, De Lannoy, Forman,
Draper, & Liu, 2014) using data assimilation (DA). The goal of DA
(with particular relevance to SWE discussed here) is to yield a merged
estimate that is superior to either the observations or the model alone
(Mclaughlin, 2002). Typically, a radiative transfer model (RTM) is
used (Liang, Xu, Tsang, Andreadis, & Josberger, 2008) as a model opera-
tor to invert PMWTbmeasurements intomodel (SWE) space. However,
the practical utilization of a RTM is complicated by wet, moderately
deep snowpacks (greater than the 100 mm SWE), snow located closer
than 200 km to open water (Dong, Walker, Houser, & Sun, 2007), the
existence of ice layers on or within the snowpack (Durand, Kim, &
Margulis, 2011), and significant sub-grid scale variability (e.g., mixed
land cover within remotely sensed pixels (Andreadis, Liang, Tsang,
Lettenmaier, & Josberger, 2008)).

The fourth method is to employ a machine learning (ML) technique
(instead of a RTM) to estimate SWE, which has been conducted in a few
studies (Chang & Tsang, 1992; Tsang, Chen, Oh, Marks, & Chang, 1992;
Davis, Chen, Tsang, Hawang, & Chang, 1993; Tedesco, Pulliainen,
Takala, Hallikainen, & Pampaloni, 2004; Cao et al., 2008). These studies
focused on directly training an artificial neural network (ANN) using
in-situ SWE observations. Reasonable performance was restricted to
in-situ observation locations with less applicability to regions between
these locations (Tedesco et al., 2004).

Recent research conducted by Forman, Reichle, andDerksen (2013);
Forman and Reichle (2014) investigated the possibility of estimating
Tbs (rather than SWE) by utilizing ML algorithms with an artificial
neural network (ANN) or a support vector machine (SVM). In a DA
context, the belief is the direct assimilation of Tb (rather than SWE) is
preferable as it will avoid inconsistencies in the use of ancillary data
between the assimilation system and the pre-processed geographical
retrievals (Eyre, Kelly, McNally, Andersson, & Persson, 1993). It is fur-
ther hypothesized that ML will serve as a more reliable model operator
(relative to snow emission RTM) since current land surface models lack
the fidelity at regional and continental scales to meet the needs of a
snow emission model (e.g., snow grain size, depth hoar development,
internal ice layering) (Durand & Margulis, 2007).

It was concluded in Forman et al. (2013) and Forman and Reichle
(2014) that both the ANN and SVM could eventually be used as mea-
surement operators to estimate Tbs within a DA framework for the pur-
pose of SWE estimation at regional and continental scales. However, a
number of fundamental questionsmust first be addressed. For example,
do the ANN and SVM reproduce Tb for the right (i.e., physically-based)
reasons? Further, what are the most significant input variables to the
ML models? Are the accurate Tb estimates over snow-covered land
associated with the snow-related variables (e.g., SWE)? If so, under
which conditions (e.g., with or without overlying vegetation) will the
ML models be sensitive to SWE? Or is the sensitivity of the ML model
output due to non-snow-related state variables (e.g., soil temperature
and air temperature)? Therefore, the goal of this current study is to
explore the ANN- and SVM-derived Tb sensitivities using a unified
framework in an effort to answer the questions formulated above.

2. Machine learning and model formulation

Arthur Samuel (1959) first defined ML as a field of study that gives
computers the ability to learn without being explicitly programmed.
An alternative definition is the process of identifying a set of categories
(sub-populations) where a new observation belongs on the basis of a
training set of data containing observations whose category member-
ship is known (Hastie, Tibshirani, Friedman, & Franklin, 2005). Based
on properly constructed systems with proper parameterizations, ML
algorithms are capable of learning about the regularities present in the

training data such that constructing and generalizing rules can be
extended to the unknown data during the training phase.

There is a plethora of ML algorithms to choose from depending on
what type of question needs to be addressed. An ANN and a SVM frame-
work are selected in this study (with particular relevance to SWE)
because (1) they are data-driven models (He, Wen, Liu, & Du, 2014)
used in cases where the underlying physical relationships between
the electromagnetic response and SWE characteristics are not fully
understood and (2) they can be used to reproduce nonlinear processes
via iterations without prior knowledge about the relationship between
the parameters (Suykens, Vandewalle, & De Moor, 2001) (e.g., snow
grain size and SWE).

However, some differences between these two types of ML tech-
niques are also evident. For example, the existence of local minima
(Smola & Schölkopf, 2004) could prevent an ANN from finding the
unique global minimum solution to a constrained optimization
problem, which is not the case for a SVM, which possesses a more sim-
ple geometric interpretation (Burges, 1998) characterized by convex
optimization problems and thereby a unique global optima will always
be found. Additionally, if the size of the training examples is not large
enough, the SVM is expected to perform well based on a properly-
selected mechanism of model parameters since the number of support
vectors in the decision (feature) space is far less than the number of
training points (Tsang, Kwok, Cheung, & Cristianini, 2005) whereas an
ANN is always in need of a relatively large number of training points.

Both ANN- and SVM-based techniques in this study utilize the same
model inputs derived from the NASA Catchment land surface model
(Catchment; Koster, Suarez, Ducharne, Stieglitz, & Kumar, 2000) and
output Tbs at three different frequencies (10.65 GHz, 18.7 GHz, and
36.5 GHz) at both horizontal and vertical polarization (see Table 1).
Uncertainty and errors in Catchment-derived model output, including
SWE, were discussed in detail in Reichle et al. (2011). In general, the
Catchment model is unbiased (Reichle et al., 2011) and the brightness
temperatures produced from the machine learning algorithms are also
unbiased (Forman et al., 2013; Forman & Reichle, 2014). Therefore, it
is hypothesized that the first statistical moment related to the mode of
estimated SWE in the Catchment model is reasonably characterized.

Each ML technique is trained with the same nine-year (2002–2011)
training dataset of Tb observations from theAdvancedMicrowave Scan-
ning Radiometer— Earth Observing System (AMSR-E) where forest and
atmospheric effects were not removed prior to ANN or SVM training in
this study. All Catchment-based inputs (i.e., the 11model inputs listed in
Table 1), AMSR-E training data, ANN-based output, and SVM-based
output (e.g., six different Tbs listed in Table 1) are generated on the

Table 1
Model (ANN and SVM) inputs and outputs (reproduced from Forman et al., 2013).

Inputs Symbol Unit

Top layer snow density ρsn1 kg/m3

Middle layer snow density ρsn2 kg/m3

Bottom layer snow density ρsn3 kg/m3

Snow liquid water contenta SLWC kg/m3

Snow water equivalenta SWE m
Near-surface air temperature Tair K
Near-surface soil temperature Tp1 K
Skin temperature Tskin K
Top layer snow temperature Tsn1 K
Bottom layer snow temperature Tsn3 K
Temperature gradient index TGI –

Outputs Symbol Unit

Brightness temperature at 10.65 GHz, H-polarization 10 H K
Brightness temperature at 10.65 GHz, V-polarization 10 V K
Brightness temperature at 18.7 GHz, V-polarization 18 H K
Brightness temperature at 18.7 GHz, H-polarization 18 V K
Brightness temperature at 36.5 GHz, V-polarization 36 H K
Brightness temperature at 36.5 GHz, H-polarization 36 V K

a Column-integrated quantity.
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