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The quantification of forest ecosystems is important for a variety of purposes, including the assessment ofwildlife
habitat, nutrient cycles, timber yield and fire propagation. This research assesses the estimation of forest structure,
composition and deadwood variables from small-footprint airborne lidar data, both discrete return (DR) and full
waveform (FW), acquired under leaf-on and leaf-off conditions. The field site, in the New Forest, UK, includes
managed plantation and ancient, semi-natural, coniferous and deciduous woodland. Point clouds were rendered
from the FW data through Gaussian decomposition. An area-based regression approach (using Akaike Information
Criterion analysis)was employed, separately for the DR and FWdata, tomodel 23field-measured forest variables. A
combination of plot-level height, intensity/amplitude and echo-width variables (the latter for FW lidar only)
generated from both leaf-on and leaf-off point cloud data were utilised, together with individual tree crown
(ITC) metrics from rasterised leaf-on height data. Statistically significant predictive models (p b 0.05) were gener-
ated for all 23 forest metrics using both the DR and FW lidar datasets, with R2 values for the best fit models in the
range R2 = 0.43–0.94 for the DR data and R2 = 0.28–0.97 for the FW data (with normalised RMSE values being
18%–66% and 16%–48% respectively). For all but two forest metrics the difference between the NRMSE of the best
performing DR and FW models was ≤7%, and there was an even split (11:12) as to which lidar dataset (DR or
FW) generated the best model per forest metric. Overall, the DR data performed better at modelling structure var-
iables, whilst the FW data performed better at modelling composition and deadwood variables. Neither showed a
clear advantage at modelling variables from a particular vegetation layer (canopy, shrub or ground). Height, inten-
sity/amplitude, and ITC-derived crown variables were shown to be important inputs across the best performing
models (DR or FW), but the additional echo-width variables available from FWpoint datawere relatively unimpor-
tant. Of perhaps greater significance to the choice between lidar data type (i.e. DR or FW) in determining the pre-
dictive power of the best performingmodelswas the selection of leaf-on and/or leaf-off data. Of the 23 bestmodels,
10 contained both leaf-on and leaf-off lidar variables, whilst 11 contained only leaf-on and two only leaf-off data.
We therefore conclude that although FW lidar has greater vertical profile information than DR lidar, the greater
complimentary information about the entire forest canopy profile that is available from both leaf-on and leaf-off
data is of more benefit to forest inventory, in general, than the selection between DR or FW lidar.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

A forest ecosystem can be described in terms of its structural, com-
positional and functional properties, which can be strongly influenced
by any management strategies applied to a site. The quantification of
forest structure is important for a range of disciplines, as vegetation
structure is related to a wide variety of ecosystem processes. However,
a comprehensive understanding of the overall spatial patterns of struc-
tural variation in large forested landscapes is still largely incomplete
(Anderson et al., 2008).

The management of an area is often assisted by landscape-scale
monitoring (Newton et al., 2009), with a requirement of measuring
both vertical and horizontal metrics. For example, the assessment of
timber yields requires information on the density of trees, together
with their species and size (Matthews & Mackie, 2006). Such data
allow the quantification of timber yield and its associated economic
value, and in addition risk assessment for fire, wind or pest damage,
which are also partially dependent on canopy structure. Vertical struc-
ture is of importance in determining the species composition of ground
flora (Ferris, Peace, Humphrey, & Broome, 2000), in the assessment of
habitat quality for many forest-dwelling species (Hinsley, Hill, Fuller,
Bellamy, & Rothery, 2009), and as an indicator of biodiversity (Ferris &
Humphrey, 1999). Traditionally forest inventory data are collected
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through manual field observations in sample plots. The benefit of this
approach can be high accuracy, but it is time consuming and expensive
(Aplin, 2005).

Airborne remote sensing technologies such as lidar can characterise
both horizontal and vertical structures in forested environments. The
use of lidar has rapidly come to prominence in estimating forest biophys-
ical characteristics, such as canopy height and basal area (Evans, Hudak,
Faux, & Smith, 2009). Most commercial airborne lidar systems are
small-footprint (i.e. b1 m) and deliver discrete return (DR) point data.
The point data correspond to high intensities in the back-scattered light
of the laser pulse interactingwith a surface, allowing some systems to re-
cordmultiple returns per laser pulse (typically 1–5). Due to limitations in
the design of most multi-return airborne lidar systems, there is a sizable
‘blind spot’ (or dead zone) following each detected return (typically
1.2 m to 5.0 m) in which no other surfaces can be detected (Reitberger,
Krzystek, & Stilla, 2008). Range resolution is determined by the length
of the transmitted pulse and the maximum number of returns recorded
by the sensor. The signal processing algorithms which are used to detect
returns are often proprietary and differ betweenDR lidar sensors (Disney
et al., 2010; Næsset, 2009).

Recent developments in scanning lidar technology resolve the issue of
a blind spot. Small-footprint, full waveform (FW) lidar systems have be-
come available commercially. FW lidar sensors digitise the total amount
of laser energy returned to the sensor in fixed time intervals (typically
1 ns to 5 ns), providing a near continuous distribution of back-scattered
laser intensity for each recorded pulse (Wagner, Hollaus, Briese, &
Ducic, 2008). Instead of clouds of individual three-dimensional points,
such aswithDR lidar, small-footprint FW lidar devices provide connected
profiles of the three dimensional scene, which contain more detailed in-
formation about the structure of the illuminated surfaces (Alexander,
Tansey, Kaduk, Holland, & Tate, 2010). Eachwaveform consists of a series
of temporal modes (or echoes), where each corresponds to an individual
reflection event from an object or set of close but separated objects. Each
laser pulse waveform represents complex data, which requires sophisti-
cated processing before metrics can be generated (Chauve et al., 2009).
One potential approach to derive information from the waveform is to
identify proximal peaks, or returns, to present the waveform as a series
of Gaussian curves; fitted by a non-linear least squares approach (Miura
& Jones, 2010; Wagner, Ullrich, Ducic, Melzer, & Studnicka, 2006). The
replacement of Gaussian functions with stochastic functions based on
marked point processes (Mallet et al., 2010) has also been suggested as
a method of processing small-footprint FW lidar data. Extracting individ-
ual returns from FW data can have the effect of removing the blind spot
present in DR data that have been processed by proprietary software.

Airborne DR lidar systems have been utilised for the estimation and
retrieval of various forest related variables,which are important toman-
agement and ecological monitoring. This is due to an inherent ability to
provide both geo-referenced horizontal and vertical information on the
structure of forest canopies, with sampling dependent on the type of
lidar system used and flight configuration (Evans et al., 2009; Næsset,
2009). The most obvious vegetation measure extracted from lidar is
that of canopy height. Plot- or stand-level regression analysis or non-
parametric model estimates of canopy density, mean tree height, basal
area and volume have been applied (Bouvier, Durrieu, Fournier, &
Renaud, 2015; Hyyppä et al., 2008; Næsset, 2007). Other studies have
been able to characterise understorey vegetation cover and detect sup-
pressed trees (Estornell, Ruiz, Velazquez-Marti, & Fernandez-Sarria,
2011; Maltamo et al., 2005), assess regeneration patterns and floristic
composition (Bollandsåsa, Hanssen, Marthiniussen, & Næsset, 2008;
Leutner et al., 2012), and estimate deadwood volume (Kim, Yang, et al.,
2009; Pesonen, Maltamo, Eerikainen, & Packalen, 2008). Lidar sensors,
typically DR, can collect data at point densities sufficient to identify indi-
vidual tree crowns in forest canopies and delineate crown horizontal
extent and vertical depth (Kaartinen et al., 2012). Such individual tree
crown (ITC) metrics have been identified as important inputs into pred-
icative models of forest variables (e.g. Hyyppä, Kelle, Lehikoinen, &

Inkinen, 2001; Persson, Holmgren, & Soderman, 2002; Popescu, Wynne,
& Scrivani, 2004).

With an increasing accessibility of small-footprint FW lidar, there is a
small but growing number of published studies which evaluate FW and
DR lidar for the estimation of forest structural and compositional pa-
rameters. For example, Cao et al. (2014) compared statistical predic-
tions of total living biomass obtained from DR lidar metrics (i.e. height
and height variance measures, canopy return density measures, and
canopy cover measures) and from FW lidar metrics (i.e. height of medi-
an energy, waveform distance, height/median ratio, number of peaks,
roughness of outermost canopy, front slope angle, return waveform
energy and vertical distribution ratio). They extracted the DR data by
Gaussian decomposition of the FW data, and therefore the two datasets
shared the same sampling rate characteristics but supplied different sets
of metrics due to theway the full waveform informationwas processed.
They found that lidar metrics related to canopy height (either DR or
FW derived) were the strongest predictors of total biomass, but that
there were benefits from the synergistic use of DR and FW lidar metrics
in estimating the different biomass pools in the forest vertical
structure. Lindberg, Olofsson, Holmgren, and Olsson (2012) outlined a
method to analyse both DR and FW lidar data for the estimation of
canopy vegetation volume for coniferous and deciduous forest. Esti-
mates of volume from FW lidar were predicted more accurately than
from DR lidar, especially when corrections were applied for the
shielding effects of higher vegetation layers based on the Beer–Lambert
Law. Allouis, Durrieu, Vega, and Couteron (2013) reported similar
results where the inclusion of FW metrics improved model estimates
for the prediction of above-ground biomass of individual trees, but
gave slightly inferior estimates of stem volume when compared with
DR lidar only. Yu, Litkey, Hyyppä, Holopainen, and Vastaranta (2014)
compared DR and FW lidar for individual tree crown delineation and
boreal forest species classification, reporting that FW lidar was slightly
better for detecting trees, whilst DRmetrics combined with FWmetrics
improved species classifications. Armston et al. (2013) compared DR
and FW lidar data for the estimation of vertical canopy gap probability
for savanna woodland, showing that models produced using FW lidar
data were superior.

The use of small-footprint DR lidar data for forest inventory using an
area-based regression approach is nowwell established (Næsset, 2007).
As small-footprint FW lidar data become more readily available, early
studies suggest possible benefits and potential drawbacks inmoving to-
wards these data. As yet there has been no systematic study to compare
small-footprint DR and FWdata for the estimation ofmultiple inventory
variables from across a forest profile. This study addresses this research
gap, comparingpoint cloud data and derivedproducts fromDR lidar and
from Gaussian decomposition of FW lidar. The work of Cao et al. (2014)
compared standard DR height metrics with newer sets of FW lidar met-
rics, and specifically avoided investigating the effects of higher density
point clouds provided by FW lidar decomposition. Here we specifically
focus on a comparison between the different information content on for-
est vertical and horizontal structure and recorded return pulse character-
istics in DR and FW-derived point clouds. We assess 23 common forest
inventory variables covering all forest vegetation layers (canopy, shrub
and ground layer) and both living and dead wood. Airborne DR and FW
lidar data were acquired simultaneously under both leaf-on and leaf-off
conditions, and variables from both (including point cloud and ITC-
derived lidar variables) are used in area-based regression modelling of
forest inventory variables. The wider context of this work was forest
condition assessment.

2. Data and methods

2.1. Study site

The study site is located within the New Forest National Park, be-
tween Southampton and Bournemouth, in southern England (lat: 50°
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