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ARTICLE INFO ABSTRACT

Article history:

Positional errors may cause problems when field and remotely sensed data are combined in connection with
forest surveys. In this study we evaluated the effects of such errors on statistical estimates of growing stock
volume using model-assisted and model-based estimation. With model-assisted estimation, positional errors af-
fect the model parameter estimates for the models that are used as part of the estimation framework. In addition,
positional errors affect the estimators, since the deviations between model predictions and field measurements
are often larger than they would have been without positional errors. Using model-based estimation positional
errors affect the model parameter estimates and thus the estimators. We compared the effects of positional errors
in model-assisted and model-based estimation through Monte Carlo sampling simulation in a simulated study
area resembling the forest conditions in Kuortane, western Finland. The forest population was created using a
copula modelling approach based on field, Landsat and LiDAR data. We found that positional errors led to slightly
biased estimators, and estimators with larger variances compared to the cases where data were perfectly
geo-located. The relative increase of the variances of the estimators was of equal magnitude for model-assisted
and model-based estimation, when models were developed and applied to data with geopositional errors.
Further, the variance estimators were always more precise for the model-based estimators compared to the
model-assisted estimators. When the models were developed based on perfectly geo-located data but applied
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to data with positional errors, model-based estimation was superior to model-assisted estimation.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Forest surveys based on combinations of field and remotely sensed
(RS) data are becoming increasingly important (e.g., McRoberts,
Tomppo, & Nesset, 2010). Through this combination, forest information
can be obtained both in terms of maps and statistical estimates of means
and totals of target variables (Tomppo, Olsson, et al., 2008). Also, RS data
typically are much less expensive than field data per area unit and thus
cost-efficient sampling designs can be developed that require fewer
field plots compared to traditional forest inventories. In several coun-
tries, infrastructure in terms of road networks is poorly developed and
surveys that rely largely on RS data may be the only alternative;
e.g., this is the case for many countries in the tropics that are currently
preparing for implementing the REDD+ mechanism (reducing
emissions from deforestation and forest degradation) under the United
Nations' framework convention on climate change (United Nations,
Kyoto, 1998; Cienciala et al., 2008).
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Regarding statistical estimates, different inferential frameworks are
available for the combination of field and RS data. A well-known ap-
proach is to use RS data only for stratification or post-stratification
(e.g., McRoberts, Wendt, Nelson, & Hansen, 2002; Nilsson et al., 2003).
More advanced, and currently rather intensively studied, methods in-
clude model-assisted and model-based estimation (e.g., Breidenbach &
Astrup, 2012; Gregoire et al., 2011; Nasset, Bollandsas, Gobakken,
Gregoire, & Stahl, 2013; Opsomer, Breidt, Moisen, & Kauermann, 2007;
Saarela, Grafstrom, et al., 2015; Stahl et al., 2011). With model-
assisted estimation (Saarela, Grafstrom, et al., 2015), regression models
are developed based on data from plots where both field and RS data are
available. The models are applied to all areas for which RS data are
available; this may be a complete enumeration or a sample of the target
area (e.g., Saarela, Grafstrom, et al., 2015). A total value of the target
variable based on the model predictions is estimated. Subsequently
this value is corrected by a sample-based estimate of the total of the
deviations between values based on measurements in the field and
the model predictions. Thus, model-assisted estimation requires a
probability sample of field plots to be available from the entire target
area. The theory for model-assisted estimation has been developed,
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largely, by Sarndal, Swensson, and Wretman (1992), although standard
regression estimators have been available for a long time (e.g., Cochran,
1977). Applications of model-assisted estimation for assessing forest
resources include e.g., Opsomer et al. (2007), Gregoire et al. (2011),
Breidenbach and Astrup (2012), Strunk, Temesgen, Andersen, and
Packalén (2014) and Saarela, Grafstrom, et al. (2015).

With model-based estimation, models are developed using data
from plots where both field and RS data are available (McRoberts,
2006; McRoberts, Naesset, & Gobakken, 2013). These models are then
applied to the entire target area (Stdhl et al., 2011). Totals are obtained
by summing the predictions and mean values by dividing the totals with
the known total area. The theory for model-based estimation dates back
to Matérn (1960), and important contributions have been made by
Royall (1971) and Cassel, Sarndal, and Wretman (1977). Applications
in forest inventories are described by Gregoire (1998), Magnussen,
McRoberts, and Tomppo (2009), McRoberts et al. (2013), Stdhl et al.
(2011) and Stahl, Heikkinen, Petersson, Repola, and Holm (2014).

In some cases RS data are only available from a sample of the target
area; in this case the inferential framework will be a hybrid of design-
based and model-based estimation (Corona, Fattorini, Franceschi,
Scrinzi, & Torresan, 2014; Stdhl et al., 2011). Contrary to model-
assisted estimation, model-based estimation does not require a proba-
bility sample of field plots to be available from the target area. Field
plots for the model parameter estimation may be purposively selected.

The tradition of conducting sample-based field inventories, such as
national forest inventories (NFIs), dates back about a hundred years in
several countries (Tomppo et al., 2010). The tradition of conducting
sample-based forest inventories based on combinations of field and RS
data has a much shorter history (Tomppo, Haakana, Katila, Perdsaari,
2008), but are available in countries such as in Switzerland (Brassel &
Lischke, 2001), Italy (Tabacchi et al., 2007) and the U.S.A. (McRoberts
et al., 2010). Further, several issues remain to be studied and resolved,
e.g. how estimates should efficiently be broken down on different do-
mains of study and what positional accuracies are required in the deter-
mination of the location of field and RS data in order to assure accurate
estimators of target population parameters. The latter issue has been
studied to some extent by Reese, Granqvist-Pahlén, Egberth, Nilsson,
and Olsson (2005), and it has been shown that positional accuracies in
the order of 5 m can seriously affect plot level predictions based on RS
data. Further, Zhang et al. (2013) investigated the uncertainties of map-
ping aboveground forest carbon as a result of geo-location errors of
sample plots and Landsat TM data. The authors showed a clear positive
correlation between regression model goodness of fit and location error
distance. Similar results were reported by Wang et al. (2011). However,
the connection between geo-location errors and model-assisted and
model-based estimation of forest resources has only been studied by
McRoberts (2010), where effects of rectification and Global Positioning
System (GPS) errors on satellite image-based inference for proportion
forest area was analysed, and by McRoberts et al. (2005), where effect
of perturbing and swapping inventory pots locations was estimated.
For applying these techniques in practice this is an important issue,
since using accurate positioning equipment in forest may be difficult
and time consuming in order to achieve adequate accuracy in a cost-
efficient way, because there are several factors, such as dense canopy
cover, that negatively affect the Global Navigation Satellite System
(GNSS) signals. Further, the impacts of positional errors are likely to
be different between different inferential frameworks, since in model-
assisted estimation co-location of field plots and RS data are needed
both for model estimation and application, whereas in model-based in-
ference co-location is needed only for model development. Thus, this
issue might be important to consider when choosing what inferential
framework should be applied in a forest survey.

The objective of this study was to assess the effects of positional
errors in field and RS data in connection with model-assisted and
model-based estimation. In particular, we evaluated any differences in
the effects of positional errors between the two inferential frameworks.

Our study focused on standard errors of growing stock volume (GSV)
estimates.

2. Material and methods
2.1. Simulated population

The study was conducted through sampling simulation within a
simulated forest. The simulated forest was constructed following the
method developed by Ene et al. (2012) using data collected from the
Kuortane region in western Finland. The area was chosen for a pilot
research project using Airborne Light Detection And Ranging (LiDAR)
data in forest inventories. The LiDAR data acquisition was done in July
2006 using an Optech 3100 laser scanning system. The average flying al-
titude above terrain was 2000 m. The mean footprint diameter was 60 cm
and the average point density was 0.64 m~2. Altogether 19 north-south
oriented flight lines were flown using a side overlap of about 20%.

In this study area, a modified Finnish NFI measuring system was
employed for the field survey. The sampling density was increased,
e.g., each cluster had 18 plots instead of the usual 9, and the density of
clusters was almost doubled. The distance between plots in a cluster
was 200 m, between clusters was 3500 m. Circular NFI plots with a
fixed radius of 9 m were used. Every seventh tally tree was measured
as a sample tree. The diameter at breast height was measured for all
trees larger than 50 mm. Tree heights were estimated using tree species
specific height models by Veltheim (1987), and the estimated heights
were calibrated using height measurements from the sample trees.
For each tree with a diameter larger than 50 mm, tree-level volumes
were estimated (Laasasenaho, 1982). The tree-level volumes were
transformed to volumes per hectare for each plot (Tomppo, Haakana,
et al., 2008). Plot locations were assessed with Trimble ProXH with an
RMSE of less than 1 m. A total of 441 field plots were available for forest
areas. Areas of other land use classes were masked out using digital
land-use maps.

Based on findings in previous studies using the Kuortane dataset
(Saarela, Grafstrom, et al., 2015; Saarela, Schnell, et al., 2015), the fea-
tures of LiDAR data used as auxiliary information for each plot were:
maximum height (hpyax), 80th percentiles of the height distribution
(hgo), canopy relief ratio (CRR), and percentage of first returns above
2 m (pveg) as crown cover estimate. These features were computed
from the laser scanning point cloud using the FUSION software
(McGaughey, 2012) and the Orientation and Processing of Airborne
Laser Scanning data (OPALS) software (Pfeifer, Mandlburger, Otepka,
& Karel, 2014). In addition to LiDAR data, we downloaded Landsat
orthorectified (L1T) imagery data from U.S. Geological Survey (2014).
The Landsat 7 Enhanced Thematic Mapper (ETM + ) multispectral data
were acquired in June 2006 (path 90 and row 16). For each field plot
digital numbers of spectral values corresponding to the green (B20),
red (B30) and shortwave infra-red (B50) Landsat bands were comput-
ed, using the nearest neighbour re-sampling method in the ArcGIS
software (ESRI, 2011).

The same simulated population as in Saarela, Schnell, et al. (2015),
resembling the Kuortane study area forest conditions in western
Finland, was used in this study. The population was created using a mul-
tivariate probability distribution copula technique (Ene et al., 2012;
Nelsen, 2006) based only on plots with non-zero growing stock values.
Our study population consists of 818,016 grid cells of 16 m x 16 m size,
located in the land-use category forest. For each grid cell, values of
Landsat spectral values, LiIDAR metrics, and GSV were simulated. In
order to perform our analysis of errors related to geopositional
mismatching in cases when a boundary cell was randomly selected
through the Monte Carlo simulation approach, we created a buffer
zone outside the boundary grid cells (see Fig. 1). The buffer zone as-
sured that all boundary grid cells have eight neighbouring grid cells.
Grid cells of the buffer zone were taken as a random sample from the
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