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Increasing attention on tropical deforestation and forest degradation has necessitated more detailed knowledge
of forest change dynamics in the tropics. With an increasing amount of satellite data being released to the public
free of charge, understanding forest change dynamics in the tropics is gradually becoming a reality. Methods to
track forest changes using dense satellite time series allow for description of forest changes at unprecedented
spatial, temporal and thematic resolution. We developed a data-driven approach based on structural change
monitoringmethods to track disturbance-regrowth dynamics using dense Landsat Time Series (LTS) in a tropical
forest landscape inMadre de Dios, southern Peru. Whereas most existing post-disturbance regrowthmonitoring
methods rely on annual or near-annual time series, our method uses all available Landsat data. Using our
disturbance-regrowth method, we detected annual disturbance from 1999 to 2013 with a total area-weighted
accuracy of 91 ± 2.3%. Accuracies of the regrowth results were strongly dependent on the timing of the original
disturbance.Weestimated a total area-weighted regrowth accuracy of 61±3.9% for pixelswhere original distur-
banceswere predicted earlier than 2006.While the user's accuracy of the regrowth class for these pixelswas high
(84±8.1%), the producer's accuracywas low (56±9.4%),withmarkedly lower producer's accuracieswhen later
disturbanceswere also included. These accuracies indicate that a significant amount of regrowth identified in the
reference data was not captured with our method. Most of these omission errors arose from disturbances late in
the time series or a lack of sensitivity to long-term regrowth due to lower data densities near the end of the time
series. Omission errors notwithstanding, our study represents the first demonstration of a purely data-driven al-
gorithm designed to detect disturbances and post-disturbance regrowth together using all available LTS data.
With this method, we propose a continuous disturbance-regrowth monitoring framework, where LTS data are
continually monitored for disturbances, post-disturbance regrowth, repeat disturbances, and so on.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Rapid changes in tropical forest ecosystems worldwide in recent
decades have had tremendous environmental impacts globally, contrib-
uting significantly to climate change (Gullison et al., 2007) and biodi-
versity loss (Laurance et al., 2012). In response to these threats,
international level discussions, frameworks and initiatives have been
set up to combat anthropogenic forest loss. One such initiative, the
“Reducing Emissions from Deforestation and forest Degradation”
(REDD+) programme, features results-based payments tomainly trop-
ical countries who implement activities to stem CO2 emissions arising
from deforestation and forest degradation (Corbera, Estrada, & Brown,
2010). A key requirement for the successful implementation of
REDD+ is the Measuring, Reporting and Verification (MRV) of forest-

related emissions and emission reductions (DeVries & Herold, 2013;
Herold & Skutsch, 2011; Joseph, Herold, Sunderlin, & Verchot, 2013).
The importance of including remote sensing data in MRV for REDD+
has been widely recognized among the scientific community (De Sy
et al., 2012; Goetz & Dubayah, 2011).

A range of tropical forest monitoring systems and initiatives have
been developed in recent years to support national and international
efforts to stem tropical forest loss. With an increase in the availability
of free satellite imagery, large-area mapping of forest disturbances has
been operationalised in several key instances in the tropics. First, the
Brazilian Space Agency (INPE) launched the PRODES and DETER moni-
toring databases to provide data on annual forest change and near
real-time disturbance detection, respectively (INPE, 2014a, 2014b).
Second, a global map of annual forest change made at 30 m resolution
(Hansen et al., 2013) was recently made public under the banner of
the Global Forest Watch (World Resources Institute, 2014). These
systems represent an important development towards the operational
monitoring of forest change, not only in support of REDD+ MRV, but
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also as a tool to raise public awareness of the scale and rate of tropical
forest change.

Change detection methods increasingly make use of Landsat Time
Series (LTS) data, signaling a shift away from conventional bi-temporal
change detection methods (Coppin, Jonckheere, Nackaerts, Muys, &
Lambin, 2004). This shift is due in part to the opening of the Landsat
archive to the public in 2008, which was followed by the development
ofmethodswhichmakemaximal use of the data contained in the Landsat
archive (Wulder, Masek, Cohen, Loveland, &Woodcock, 2012). Following
the opening of the Landsat archive, the pre-processing of imagery to
derive surface reflectance and mask clouds became operationalised
(Masek & Vermote, 2006; Zhu & Woodcock, 2012), facilitating the use
of these data for a wide range of applications, including change detection.
Table 1 outlines a selection of some change detection methods based
on dense LTS either by creating annual composite time series
(e.g. (Griffiths et al., 2014; Kennedy, Yang, & Cohen, 2010;
Huang et al., 2010)) or by exploiting all data available in the archive
(e.g. (Broich et al., 2011; DeVries, Verbesselt, Kooistra, & Herold, 2015;
Dutrieux, Verbesselt, Kooistra, & Herold, 2015; Reiche, Verbesselt,
Hoekman, & Herold, 2015; Zhu, Woodcock, & Olofsson, 2012)).

While awealth of forest disturbancemethods and products based on
LTS have been developed in recent years, disturbance-recovery dynam-
ics are less well understood, especially in tropical forest systems. An
understanding of the fate of forests after a disturbance is important in
order to estimate net changes (Brown & Zarin, 2013) or to elucidate
the drivers of forest change (Kissinger, Herold, & Sy, 2012). As in the
case of disturbance monitoring, LTS data present an opportunity to
describe forest dynamics with much more detail and certainty than is
possible with bi-temporal comparison methods (Kennedy et al.,
2014). A number of studies in temperate and tropical forests have
used LTS to describe disturbance–regrowth dynamics, ranging from
classification to temporal trajectory based methods. Carreiras, Jones,
Lucas, & Gabriel (2014) monitored disturbance–regrowth dynamics at
several sites in the Brazilian Amazon by classifying near-annual Landsat
time series data into forest, secondary forest or non-forest classes,
thereby shedding light on age classes and re-clearance rates of the
forests. Schmidt, Lucas, Bunting, Verbesselt, & Armston (2015) mea-
sured regrowth in a forest-savanna landscape in Queensland, Australia
by measuring trends in annual minimum NDVI. Czerwinski, King, &
Mitchell (2014) monitored sudden and gradual positive and negative
trends in a protected forest in Canada by applying the Theil-Sen slope
estimator (Fernandes & Leblanc, 2005; Sen, 1968) paired with the
Contextual Mann–Kendall test (Neeti & Eastman, 2011; Neeti et al.,
2012) on annual LTS data. The LandTrendR method (Kennedy et al.,
2010), which segments LTS into temporal trajectories, has been demon-
strated in a number of contexts to be useful in describing historical
forest disturbance–regrowth patterns (Main-Knorn et al., 2013; Neigh,
Bolton, Diabate, Williams, & Carvalhais, 2014; Powell, Cohen, Kennedy,
Healey, & Huang, 2013), an approach which has also proven valuable in
predicting above-ground biomass using LTS (Frazier, Coops, Wulder, &
Kennedy, 2014; Pflugmacher, Cohen, & Kennedy, 2012). Similarly, the

Vegetation Change Tracker (VCT; (Huang et al., 2010)) monitors forest
change and recovery using annual time series of spatially defined forest
probability index derived from LTS. The most spatially comprehensive
analysis of forest regrowth was undertaken by Hansen et al. (2013),
who mined LTS data globally to produce a map of global forest loss
and gain over the period 2000 to 2012 using a thresholding and bagged
decision tree approach.

The spectral band or index used in the disturbance-regrowthmethod
is an important determinant of the sensitivity of the method to forest
change dynamics. The Normalized Difference Vegetation Index (NDVI)
is one of the most commonly used indices in vegetation monitoring.
While NDVI has been shown to be sensitive to forest change when
used in a time series context (DeVries et al., 2015; Dutrieux et al.,
2015; Reiche et al., 2015), it performs poorly as a measure of forest
cover and structure (Freitas, Mello, & Cruz, 2005), and tends to saturate
over dense forest (Gamon et al., 1995; Huete et al., 2002). A number of
alternative metrics have been proposed in the forest disturbance moni-
toring literature, including the Normalized Burn Ratio (NBR) (Key &
Benson, 2006), the Normalized Difference Moisture Index (NDMI; also
known as the Normalized Difference Water Index, NDWI) (Gao, 1996;
McDonald, Gemmell, & Lewis, 1998; Wilson & Sader, 2002), and a
range of metrics derived from the Tasseled Cap transformation
(Ahmed, Franklin, & Wulder, 2014; Crist & Cicone, 1984; Crist & Kauth,
1986; Healey, Cohen, Zhiqiang, & Krankina, 2005; Kennedy et al., 2010;
Kennedy et al., 2012). Indices exploiting difference in reflectance be-
tween the SWIR and near infra-red (NIR) regions of the electromagnetic
spectrum (e.g. NDMI or Tasseled Cap Wetness) have been found to be
particularly useful in discriminating forest age classes (Fiorella &
Ripple, 1993) due to their sensitivity to canopy moisture content
(Hardisky, Klemas, & Smart, 1983; Hunt & Rock, 1989; Jin & Sader,
2005).

Most regrowthmonitoring algorithms rely on annual or near-annual
time series constructed either by selecting a representative image
or composite of images for each time period (Carreiras et al., 2014;
Czerwinski et al., 2014; Kennedy et al., 2012). Aswith disturbancemon-
itoring, the reduction of the temporal resolution of the data can lead to
losses of information as off-season images are excluded from the analysis
(Zhu et al., 2012). The inclusion of all available data in a time series, on the
other hand, gives a clear advantage for specific monitoring objectives,
including near real-time disturbance monitoring, for example (Reiche
et al., 2015; Verbesselt et al., 2012; Zhu et al., 2012). Other monitoring
objectives such as post-disturbance regrowth can similarly benefit from
the inclusion of all available data. Temporally dense time series with
multiple observations per season can shed light on phenological dynam-
ics in forests (Schmidt et al., 2015; Verbesselt, Hyndman, Zeileis, &
Culvenor, 2010), potentially reducing the need for training data in sepa-
rating permanent land use change (e.g. forest to cropland) from transient
changes (e.g. forest harvest cycles).

Structural change monitoring methods rooted in the econometrics
discipline have been shown to be useful in describing time series data
in rich detail (Chu, Hornik, & Kuan, 1992; Leisch, Hornik, & Kuan,

Table 1
Selection of forest change detection methods using LTS data.

Method Study area Reference(s)

1 LandTrendR — temporal segmentation on annual LTS Temperate forests (U.S., Europe) Griffiths et al. (2014), Kennedy et al. (2010)
2 CMFDA— temporal trajectory-based method for all available LTS data based

on modeled historical time series
Eastern U.S. Zhu et al. (2012), Zhu & Woodcock (2014))

3 VCT — change detection on annual Integrated Forest Z-scores (IFZ) derived
from LTS data

U.S. Huang et al. (2010)

4 BFAST monitor— temporal trajectory based method for all available LTS data
based on monitoring structural changes in a monitoring period

Tropical forests DeVries et al. (2015), Dutrieux et al. (2015), Reiche et al.
(2015), Verbesselt, Zeileis, & Herold (2012)

5 Global forest change mapping using thresholding and bagged decision tree
classifiers

Global Hansen et al. (2013)

6 Time series of forest probabilities for forest change monitoring Indonesia Broich et al. (2011)
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