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Cyanobacterial blooms are increasingly posing a severe threat to inlandwaters, particularly at the land-sea inter-
facewhere toxins can be transported downstreamwith subsequent impacts to both terrestrial andmarine organ-
isms. These blooms are relatively easy to detect optically because of the surface concentration of cells, the
presence of phycocyanin pigments, and the elevated backscatter associated with cell size and the presence of
gas vacuoles. Major challenges limiting the use of remote sensing have been, first, thatmany of these water bod-
ies are small relative to the spatial resolution of ocean color satellites, and second, evenwith a bright algal target,
the spectral resolution, signal-to-noise ratio, and repeat time for terrestrial satellites is often inadequate. The next
generation of multispectral and hyperspectral sensors begin to address these issues with both increased spatial
and spectral resolution. Weekly monitoring of Pinto Lake, California has demonstrated that this small water
body provides an ideal testbed for development and application of algorithms applicable for legacy and next-
generation sensors. Pinto Lake experiences seasonal nearly monospecific bloomswith a pronounced species suc-
cession. Biomass (as chlorophyll) within Pinto Lake seasonally ranges from ~1 to 1000 μg/L. Pinto Lake has been
within the flight lines for several recent airborne missions, including the HyspIRI Preparatory Flight Campaign,
and is often targeted for HICO acquisitions. Using these data we demonstrate that spectral-shape algorithms re-
quiring minimal atmospheric correction can be used across a range of legacy sensors to detect cyanobacterial
blooms and that, with the availability of high spectral resolution data and appropriate atmospheric correction,
it is possible to separate the cyanobacterial genera Aphanizomenon andMicrocystis. In California Aphanizomenon
is typically non-toxic and blooms prior to toxin-producing Microcystis, thus leading to the potential for an early
warning system based on the identification of algal types.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In California, there is increasing evidence that freshwater
cyanobacteria (blue-green algae) are a growing problem in lakes and
rivers.Microcystis aeruginosa in particular is considered a cyanobacterial
harmful algal bloom (CyanoHAB) organism because it can impede rec-
reational use of waterbodies, reduce esthetics, lower dissolved oxygen
concentration, and cause taste and odor problems in drinking water,

as well as produce microcystins, powerful hepatotoxins associated
with liver cancer and tumors in humans and wildlife (Carmichael,
2001). ExtensiveMicrocystis bloomswith toxin production occur during
summer and fall in impaired waterways in Washington, Oregon and
California (Gilroy, Kauffman, & Hall, 2000; Johnston & Jacoby, 2003)
andMicrocystis contamination has been documented at themarine out-
flows of the Klamath and San Francisco estuaries (Fetcho, 2007;
Lehman, Boyer, Hall, Waller, & Gerhrts, 2005) as well as from river in-
puts to Monterey Bay (Gibble & Kudela, 2014; Miller et al., 2010). The
direct impact to the threatened California Sea Otter (Enhydra lutris)
has promoted these blooms and toxins from predominantly a freshwa-
ter issue to potentially a land–sea problem, with concomitant risk be-
cause of the lack of monitoring in brackish and marine waters (Miller
et al., 2010). Other common bloom-forming pelagic cyanobacteria
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include Aphanizomenon, Anabaena, and (less common, but present, in
California) Lyngbya (Kurobe et al., 2013); however, since toxicity is pri-
marily associatedwithMicrocystis, these other CyanoHABs are generally
considered nuisance blooms rather than acutely dangerous to humans
and wildlife (Backer et al., 2010; Kudela, 2011; Lehman, Marr, Boyer,
Acuna, & Teh, 2013).

Both toxigenic (capable of producing toxin) and non-toxic strains
ofMicrocystis are present in California (Baxa, Kurobe, Ger, Lehman, &
The, 2010; Lehman et al., 2013;Moisander, Lehman, Ochiai, & Corum,
2009).M. aeruginosa bloom formation and consequent toxin genera-
tion is influenced by environmental variables such as high nutrient
supply, elevated light levels, and warm temperatures (Davis, Berry,
Boyer, & Gobler, 2009; Jacoby, Collier, Welch, Hardy, & Crayton,
2000; Paerl & Huisman, 2008; Paerl & Otten, 2013; Tsuji et al.,
1994; Welker & Steinburg, 2000; Zehnder & Gorham, 1960). The
prevalence of CyanoHABs and subsequent toxic events may be intensi-
fied by a warming climate in tandem with increases in environmental
degradation and eutrophication (Davis et al., 2009; Guo, 2007; Kudela,
2011; O'Neil, Davis, Burford, & Gobler, 2012; Paerl & Huisman, 2008;
Welker & Steinburg, 2000; Zehnder & Gorham, 1960).

While toxin events are primarily associated with M. aeruginosa,
other potentially toxic genera, including Aphanizomenon, Anabaena,
and Planktothrix are frequently present in impacted water bodies
(Kudela, 2011). These genera often produce dense surface blooms
(Lehman et al., 2013; Paerl, 2008; Sellner, 1997), making satellite detec-
tion of potentially harmful cyanobacterial blooms possible (e.g. Kahru,
1997; Simis, Peters, & Gons, 2005, Simis et al., 2007; Vincent et al.,
2004; Wynne et al., 2008). One issue with these methods is that not
all cyanobacterial genera are toxic, nor is toxin always produced by toxi-
genic species. Thus while it is possible to identify potential CyanoHABs,
it is desirable to separate potentially toxic and non-toxic blooms.

Many of the optical detection methods for identification of
cyanobacterial blooms rely on algorithms targeting phycocyanin
(reviewed by Kutser, 2009 and Ogashawara, Misra, Mishra,
Curtarelli, & Stech, 2013), a characteristic pigment associated with
freshwater cyanobacteria. Phycocyanin is a pigment-protein com-
plex with a broad absorption feature at ~620 nm, often detected
from remote sensing data using a wavelength range of 615–630 nm
(Ogashawara et al., 2013). Potential issues with these approaches in-
clude the necessity to acquire data at sufficiently fine enough spatial
and spectral resolution to identify the phycocyanin absorption feature
in remote sensed data, the sensitivity to poor remote sensing data due
to (for example) inadequate atmospheric correction (Wynne, Stumpf,
Tomlinson, & Dyble, 2010), and the lack of a “universal” algorithm ap-
plicable to all sensors (Kutser, 2009).

One approach that avoids issues with atmospheric correction and
is more easily extensible tomultiple sensors involves the use of spec-
tral shape, rather than identification of specific absorption features.
In particular, Wynne et al. (2008, 2010) demonstrated that spectral
shape (or the second derivative of the remote sensing reflectance
spectrum) is insensitive to atmospheric correction when applied to
surface-intensified blooms of cyanobacteria. Those authors devel-
oped a Cyanobacterial Index (CI) that relies on changes in the
shape between 665, 681, and 709 nm caused by the strong scattering
by cyanobacteria at around 709 nm (c.f. Wynne et al., 2008). The CI
has been successfully applied to the detection of blooms in the
Laurentian Great Lakes using the Medium Resolution Imaging Spec-
trometer (MERIS; Wynne et al., 2008), and later in conjunction
with other environmental data such as wind speed (Wynne et al.,
2010). A similar spectral shape approach was taken by Matthews,
Bernard, and Robertson (2012). Those authors developed the Maxi-
mum Peak Height (MPH) algorithm and applied MPH to inland and
coastal waters in South Africa with MERIS data. More recently, an-
other generalization of spectral shape algorithms resulted in the
Adaptive Reflectance Peak Height (ARPH) algorithm, applied to
coastal waters of Monterey Bay, California, using the Hyperspectral

Imager for the Coastal Ocean (HICO) by Ryan, Davis, Tufillaro,
Kudela, and Gao (2014). All of these algorithms employ spectral
shape and demonstrate reduced sensitivity to noisy data, such that
they can even be applied to top-of-atmosphere radiances, a method
pioneered by Gower, Doerffer, and Borstad (1999) in the develop-
ment of the Maximum Chlorophyll Index (MCI) for MERIS.

Despite advances in development of both semi-analytical phycocya-
nin methods and spectral shape methods (Ogashawara et al., 2013),
remote-sensing methods for detection of cyanobacterial HABs are still
limited by the relative unavailability of sensors with both fine spectral
and spatial resolution. Planned sensors such as the European Space
Agency's Ocean Land Color Instrument (OLCI) aboard Sentinel-3 and
NASA's Hyperspectral Infrared Imager (HyspIRI) will provide both
greatly improved spectral and spatial resolution, but are not yet avail-
able. This limitation has hindered the application of remote sensing
for routine monitoring and detection of CyanoHABs in California, de-
spite widespread interest by monitoring and management agencies.
To address these issues, and in preparation for the routine availability
of data products from OLCI, HyspIRI, and other sensors, we took advan-
tage of airborne data from the NASA Student Airborne Research Pro-
gram (SARP, 2009 and 2011) and the HyspIRI Airborne Campaign
(2013) collected over central California. Flights routinely imaged Pinto
Lake, a small, hyper-trophic water body located adjacent to Monterey
Bay, California. Pinto Lake is well characterized in terms of CyanoHAB
events (Kudela, 2011) and makes an ideal testbed for development
and testing of remote sensing algorithms. As with other inland waters,
Pinto Lake also exhibits a regular successional pattern with increases
in the (generally non-toxic) organism Aphanizomenon preceding
blooms of the highly toxicMicrocystis aeruginosa. Here we demonstrate
that a two-step approach, first identifying the presence of potential
CyanoHABs, and second, separating Aphanizomenon from Microcystis,
may provide an early-warning capability for detection of potentially
harmful blooms.

2. Materials and methods

2.1. Study area and sampling strategy

The primary study area was Pinto Lake, California (36.95° N,
121.77° W). Pinto Lake is a shallow natural lake located 8.3 km in-
land fromMonterey Bay (Fig. 1). This spring-fed lake has amaximum
depth of ~10 m and covers 37 surface hectares. Pinto Lake includes
parks operated by the City of Watsonville and Santa Cruz County,
and is regularly used for recreational activities including fishing
and boating. Two other water bodies were used as qualitative valida-
tion for the algorithm development. Kelly Lake is immediately adja-
cent to Pinto Lake (36.94° N, 121.74°W). It covers 36 surface hectares
and has amaximumdepth of ~6m. There is no public access, which pre-
cluded routine monitoring. A third water body, Campus Lagoon at the
University of California Santa Barbara (34.40° N, 119.84° W) was also
sampled opportunistically as part of the field effort.

Of the three study areas, Kelly Lake and Campus Lagoon were sam-
pled a single time, and were included as verification sites for the algo-
rithms, which were developed with the more extensive data available
from Pinto Lake. The latter has been sampled approximately weekly
since August 2009. Data include relative cell abundance determined
by microscopy, surface chlorophyll concentration, temperature, and
toxin as both whole-water “grab” samples and integrated toxin using
the Solid Phase Adsorption Toxin Tracking (SPATT) methodology.
While microcystins include more than 90 chemical congeners, the
most common and routinely reported form is microcystin LR (MCY-
LR); we therefore used the concentration of MCY-LR (ppb) in this anal-
ysis. Details of the time-series are provided in Kudela (2011). For part of
the time series phycocyanin was measured by fluorescence using an
Algae Torch (BBE). The fluorescence was converted to equivalent μg/L
concentration using discrete samples that were extracted and analyzed
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