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Coastal regions are a resource for societies while being under severe pressure from a variety of factors. They also
showa large diversity of optical characteristics, and the potential to optically classify thesewaters and distinguish
similarities between regions is a fruitful application for satellite ocean color. Recognizing the specificities and
complexity of coastal waters in terms of optical properties, a training data set is assembled for coastal regions
and marginal seas using full resolution SeaWiFS global remote sensing reflectance RRS data that maximize the
geographic coverage and seasonal sampling of the domain. An unsupervised clustering technique is operated
on the training data set to derive a set of 16 classes that cover conditions from very turbid to oligotrophic.
When applied to a global seven-year SeaWiFS data set, this set of optical water types allows an efficient
classification of coastal regions, marginal seas and large inlandwater bodies. Classes associatedwithmore turbid
conditions show relative dominance close to shore and in the mid-latitudes. A geographic partition of the global
coastal ocean serves to distinguish general optical similarities between regions. The local optical variability is
quantified by the number of classes selected as dominant across the period, averaging 5.2 classes if the cases
accounting for 90% of the data days are considered. Optical diversity ismore specifically analyzedwith a Shannon
index computed with the class memberships. Regions with low optical diversity are the most turbid waters as
well as closed seas and inland water bodies. Oligotrophic waters also show a relatively low diversity, while
intermediate regions between coastal domain and open ocean are associated with the highest diversity, which
has interesting connections with ecological features.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

As the interface between the oceans and the terrestrial ecosystems
supporting the human population, coastal regions need to be thorough-
ly studied and understood. They harbor a large share of Earth's popula-
tion with high densities (Small & Nicholls, 2003) and represent a
resource for societies, but consequently they are under increasing pres-
sure fromanthropogenic origin. Increasing population in large cities and
economic development, waste water discharge and other localized pol-
lution, and habitat disruptions have already resulted in a degradation of
coastal ecosystems (Halpern et al., 2008; Lotze et al., 2006). Human
activities directly impact the food web structure and biodiversity of
coastal regions through intense fishing (Stewart et al., 2010) and by
favoring the invasion of alien species (e.g., Katsanevakis, Zenetos,
Belchor, & Cardoso, 2013; Molnar, Gamboa, Revenga, & Spalding,
2008). The extension of the network of river impoundments modifies
both the flow of fresh water and the amount of sediments reaching
estuaries (Vörösmarty et al., 2003). Anthropogenic nutrient inputs to

coastal zones also have a strong chemical signature (Galloway et al.,
2008) leading to eutrophication and hypoxia phenomena (Diaz &
Rosenberg, 2008; Voss et al., 2011). These effects can be compounded
by the increase in greenhouse gas concentrations and its associated
warming and acidification. Consequences of climate change for plank-
ton species distribution or for the functioning of upwelling ecosystems
have already been suggested (e.g., Bakun & Weeks, 2004; Beaugrand,
Reid, Ibañez, Lindley, & Edwards, 2002).

In that context, coastal ecosystems and marginal seas need to be
properly monitored to allow an improved understanding of their
dynamics and the detection of changes in their properties, and to follow
the impact of policies aiming at environmental protection. But while a
global observing network is required, the actual sampling is very un-
evenly distributed in space or time: a large part of the coastal regions
have been poorly sampled by optically relevant observations and
some seasons are relatively ignored because of operational constraints.
Remote sensing of ocean color has a role to play as a cost-effective
tool for global and frequent observations that can be interpreted in
terms of surface concentrations of chlorophyll-a (Chla), suspendedma-
terial or chromophoric dissolved organic matter (CDOM). However this
global capability is to some extent questioned by the uneven
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distribution of field data that are at the basis of empirical algorithms or
that are used for the definition of parameters in semi-analytical bio-
optical algorithms, like the Chla-specific absorption coefficient or the
exponential slope of CDOM absorption. For the same reason, validation
results have a limited coverage particularly for remote sensing reflec-
tance or inherent optical properties. This raises the question of the ap-
plicability of most algorithms as well as the validation statistics. This
issue can be circumvented by the introduction of techniques of optical
classification that use the spectrum of remote sensing reflectance RRS
to quantify how two water bodies are similar from the optical point of
view (e.g., D'Alimonte, Mélin, Zibordi, & Berthon, 2003; Martin
Traykovski & Sosik, 2003; Moore, Campbell, & Feng, 2001). With the
proviso that algorithm definition or validation results obtained for one
optical water type (or class) are applicable to anywater body associated
with that type, optical classification techniques represent a powerful av-
enue for an optimal and truly homogeneous use of ocean color remote
sensing at global scale. This potential has already been exploited for re-
gional or global applications (Lubac & Loisel, 2007; Mélin et al., 2011;
Moore, Campbell, & Dowell, 2009; Moore, Dowell, Bradt, & Ruiz Verdu,
2014; Vantrepotte, Loisel, Dessailly, & Mériaux, 2012) by making use
of in-situ data bases to define the optical water types of reference.
This presents various advantages as field data are usually considered
as having uncertainties lower than those of satellite data, and as the
collection of field RRS data is often accompanied by othermeasurements
needed for the envisioned application (e.g., Chla for the definition of an
associated empirical algorithm). However in that case the optical vari-
ability covered by the classification is restricted to the range of the
field data, which is a limitation for the creation of a set of optical
water types that would evenly represent all regions and seasons.

The objective of this study is to use satellite data available for coastal/
shelf waters and marginal seas to derive a set of optical water types
encompassing the full extent of the optical variability found in these
regions, information as yet not available. The focus on coastal regions
is justified by their importance; often termed optically complex waters,
they also contain a large share of the optical variability of natural waters
in contrast to the fairly constrained variability found in most open-
ocean waters (Morel & Maritorena, 2001). However, as will be seen
below, optical water types typical of oligotrophic to mesotrophic
waters are covered in the analysis. The main application of the
study is to document the optical variability observed at global
scale, to expose the optical similarity between regions, or to assess
the degree of optical stability in a given region. The domain of
study and the creation of the training data set are first presented.
Then clustering and classification approaches are described, and
finally the distribution of optical water types is documented. Finally,
the optical diversity is quantified.

2. Data & methods

2.1. Satellite data and domain of study

All the Sea-viewing Wide Field-of-View Sensor (SeaWiFS, McClain
et al. 1998) Level-1A data have been collected from the Ocean Biology
ProcessingGroup (OBPG) of theNational Aeronautics and SpaceAdmin-
istration (NASA) and processed with the SeaWiFS Data Analysis Soft-
ware (SeaDAS, version 6, Fu, Baith, & McClain, 1998). This imagery is
the so-called MLAC (Merged Local Area Coverage) acquisition with a
resolution of ~1.1 km at nadir. Products were mapped onto a global do-
main with a sinusoidal projection and a spatial resolution of 1/48th-
degree (approximately 2.3 km), and subsequent analyses were made
with daily data. This spatial and temporal sampling is well adapted to
capture the optical variability found in coastal waters, whereas a higher
level of averagingwould tend to smooth out peculiar spectral character-
istics. A drawback of using the SeaWiFS MLAC data is that data acquisi-
tion has been uneven in space and time following the operation of
receiving ground stations.

The focus of thiswork is on coastal regions andmarginal seas. To iso-
late the part of the global ocean that responds to that vague definition, a
set of arbitrary criteria was applied to define the domain of study. First,
grid pointswere excluded if the shortest distance to the coastwas larger
than 200 km or if the bottom depth was deeper than 4000 m (9000 m
for the region along the western coasts of South and Central America).
Bathymetry is defined according to the General Bathymetric Chart
of the Oceans (GEBCO) 1-minute gridded data set. Finally, some
marginal seas, parts of which were excluded by these criteria, were
restored to their full extent in the domain of analysis, e.g., the
Indonesian Archipelago, the Chinese and Japan Seas, the Sea of
Okhotsk, the Mediterranean Sea, the North Sea, the Gulf of Mexico,
and the Hudson Bay. Very large lakes were also included
(e.g., Great American, European and African Lakes, Lake Baikal,
Caspian Sea) but the associated data are not included in the training
process. The final coastal domain amounts to 12% of the Earth surface
(or 17% of the ocean domain).

To retrieve regional statistics, the domain was split into distinct
regions representative of marginal seas or known partitions of the
coastal ocean (Fig. 1). In particular, this regional distribution was
partly inspired by the biogeographic provinces of Longhurst (2006)
and the Large Marine Ecosystems (LMEs) partition (Sherman &
Hempel, 2009). Tables 1 to 7 provide the list of acronyms used to
designate each region. The selected name does not necessarily reflect
the entire geographic domain usually associated with the region but
only the coastal/shelf part considered for the analysis.

The SeaWiFS data were processed for the interval 1998–2004
(7 years) which was a period of unrestricted distribution of LAC
data by NASA for research purposes. Fig. 2 illustrates the total num-
ber of days with valid data that went into the analysis. The average
number is 283 days over the 7-year period (standard deviation,
s.d., 221 days) for the entire domain. This relatively small amount
of days is explained by the use of MLAC imagery as explained
above but is sufficient to conduct a global study. This coverage ap-
pears highly variable, having a maximum of 767 days for the Medi-
terranean Sea (MEDI) and a minimum of 6 days for the Laptev Sea
(LAPT). The regions with the lowest coverage are found in the high
latitudes or associated with frequent cloud or dust cover, such as
the Gulf of Guinea (GUIN, average of 41 days). Some inland water
bodies show a fairly low coverage (down to 12 days for Lake Baikal)
but this is not a general feature (the American Great Lakes, GREL,
count an average of 358 days of valid data). An additional element
modulating the data availability is linked to the operations of the re-
ceiving ground stations.

2.2. Training data set

A training data set is needed to define a set of optical classes. To be
manageable, this data set can only be a subset of the overall satellite
data archive, yet it should be well representative of the optical vari-
ability found in natural coastal waters. The approach followed here
aimed at maximizing the geographic coverage and seasonal sam-
pling of the training data set. For each grid point within the domain,
a list of days with valid RRS spectra was built. Out of that list, five days
were retained optimizing their dispersion along the calendar year. If
a grid point had less than five days with valid data, they were all in-
cluded in the training data set. This approach ensured that a location
or a season with very few data were still represented in the training
data set, or conversely avoided that regions with many valid data or
that seasons with the most favorable atmospheric conditions domi-
nated the training process. The final training data set amounts to
51 million spectra. The full extent of the oceans is not included in
the creation of the training data set because the mesotrophic to oli-
gotrophic waters would account for a large share of the data and
weaken the ability of the clustering step to capture subtle optical
variations in coastal regions.
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