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Technological advances in satellite remote sensing have offered a variety of techniques for estimating surface soil
water content as a key variable in numerous environmental studies. Optical methods are particularly valuable for
remote sensing of soil moisture since reflected solar radiation is the strongest passive signal available to satellites
and thus observations at optical wavelengths are capable of providing high spatial resolution data. Since remote
sensors do not measure soil water content directly, mathematical algorithms that describe the connection be-
tween the measured signal and surface water content must be derived. Here, we present a physically-based
soil moisture retrieval model in the solar domain (350-2500 nm) that is based on the Kubelka-Munk two-flux
radiative transfer theory. The model is designed to describe diffuse reflectance from a uniform, optically thick, ab-

Keywords:
Remote sensing
Soil moisture

Reflectance sorbing and scattering medium. The theory suggests a linear relationship between a transformed reflectance and
Absorption soil water content in the short wave infrared bands (e.g. band 7 of Landsat and MODIS satellites) providing an
Scattering easy-to-use algorithm in these bands. Accuracy of this model was tested and preliminarily verified using

laboratory-measured spectral reflectance data of different soils. Further studies on potentials and challenges of

this model for large-scale application using optical satellites data remain a topic of ongoing research.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Surface soil moisture is a fundamental state variable controlling a
wide range of processes occurring at the land-atmosphere interface in-
cluding water infiltration and runoff, evaporation, heat and gas ex-
change, solute infiltration, erosion, etc. The importance of measuring
and monitoring surface soil moisture at various spatial scales has been
highlighted by many authors (e.g. Ochsner et al., 2013; Robinson et al.,
2008; Vereecken et al.,, 2008; Wang & Qu, 2009).

Despite recent advances in electromagnetic (EM) sensing capability,
whether ground-based (Jones, Wraith, & Or, 2002; Jones et al., 2005;
Bogena, Huisman, Oberdorster, & Vereecken, 2007; Vaz, Jones,
Meding, & Tuller, 2013) or remotely deployed (de Jeu et al., 2008;
Huisman, Hubbard, Redman, & Annan, 2003; Kornelsen & Coulibaly,
2013; Njoku, Jackson, Lakshmi, Chan, & Nghiem, 2003), accurate assess-
ment of surface water content is still a challenging task due to complex
spatiotemporal variability of soil moisture in addition to scaling issues
(Brocca, Melone, Moramarco, & Morbidelli, 2010; Crow et al., 2012;
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Landrum, 2013; Ojha, Morbidelli, Saltalippi, Flammini, & Govindaraju,
2014; Western, Grayson, & Bloschl, 2002; Western et al., 2004; Wu &
Li, 2009).

The interaction of EM radiation with soils at various wavelengths has
been shown to be significantly correlated with surface moisture con-
tent. Hence, various remote sensing (RS) methods have been developed
in different regions of the EM spectrum. These methods may be classi-
fied into three major groups (Verstraeten, Veroustraete, & Feyen,
2008; Wang & Qu, 2009):

i) Optical methods. Methods using optical (or solar domain) bands
(wavelengths between 0.35 and 2.5 pm) in which the reflected
radiation of the sun from the Earth's surface, known as reflec-
tance, is measured (Ben-Dor et al., 2009). Reflectance is com-
monly formulated as a function of soil moisture content using
empirical (regression) analysis (Wang & Qu, 2009).

ii) Thermal infrared methods. Methods in which the thermal
emission of the Earth (wavelengths between 3.5 and 14 um) is
measured (Wang & Qu, 2009). The estimation of surface soil
moisture using remotely sensed thermal wavebands primarily
relies on the use of soil surface temperature measurements,
either singly by the thermal inertia method (Verstraeten,
Veroustraete, van der Sande, Grootaers, & Feyen, 2006) or in
combination with vegetation indices, for example using the so-
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called “triangle method” (Carlson, 2007; Carlson, Gillies, & Perry,
1994).

iii) Microwave methods. Methods in which the intensity of
microwave emission (wavelengths between 5 and 1000 mm) is
measured. The fundamental basis of microwave RS of soil
moisture is the large contrast between the dielectric properties
of water (~81) and other soil constituents (<4). As surface
soil moisture content increases, the dielectric constant of
the soil-water mixture increases significantly, and this change
is readily detectable by microwave sensors (Njoku & Kong,
1977).

Microwave RS techniques have demonstrated the most promising
ability for globally monitoring of soil moisture variations (e.g. Al-Yaari
et al,, 2014). Unlike the thermal and optical sensing, there is significant
penetration into the soil at lower microwave frequencies. Measure-
ments at these frequencies are not impeded by clouds or darkness
(Njoku & Entekhabi, 1996). Most microwave models have a physical
basis, although they commonly include some empirical (calibration) pa-
rameters to account for surface roughness which causes perturbation of
the microwave signal (Shi et al., 2006).

Despite the benefits of microwave methods, optical and thermal
methods are also essential in remote sensing of soil moisture, because
of their capability for providing very high spatial resolution maps, espe-
cially when compared with the very coarse output of microwave sen-
sors. Therefore, optical/thermal satellites data provide favorable
means for downscaling (i.e. improving spatial resolution) microwave
satellite estimates of soil moisture (Merlin, Walker, Chehbouni, & Kerr,
2008; Merlin et al., 2013; Piles et al,, 2011).

In this regard, thermal approaches have received more attention
than optical. Although thermal RS methods are powerful and have
been developed based on physical rationale, the methods are often
empirical and depend on local meteorological conditions, such as
wind speed, air temperature, and humidity (Nemani, Pierce, Running,
& Goward, 1993), and thus measurement results vary temporally and
with land cover types (Czajkowski, Goward, Stadler, & Waltz, 2000).
In other words, the relationship between soil moisture and surface tem-
perature is highly dependent on atmospheric conditions. Therefore, in
most cases these methods require ground measurements for calibration
of the empirical fitting parameters (Yang, Wu, Shi, & Yan, 2008).

This limitation motivated us to revisit the optical RS technique to po-
tentially develop a physically-based method with minimal calibration
requirements. We aimed to balance between physical significance and
practical application, where such a model is lacking among existing op-
tical RS methods.

In terms of physical significance, three classes of optical models may
be distinguished in the literature. The first class includes simple regres-
sion models for formulating soil moisture-reflectance relationship (Liu
et al.,, 2002; Liu et al., 2003; Lobell & Asner, 2002; Muller & De'camps,
2000; Nolet, Poortinga, Roosjen, Bartholomeus, & Ruessink, 2014;
Persson, 2005; Skidmore, Dickerson, & Schimmelpfennig, 1975; Zhu,
Wang, Shao, & Horton, 2011). Although such models are established
based on a physical understanding of the impact water has on the soil
spectrum from light absorption and refraction at the water-mineral in-
terfaces, they commonly contain physically meaningless empirical pa-
rameters and thus require soil information a priori in order to be
solved (i.e. calibration). Models such as that of Whiting, Li, and Ustin
(2004) may be distinguished as a second category having a stronger
physical basis than the first group. Such models are based on a fit to a
continuum of the soil water absorption bands, which are directly related
to the amount of water in the surface soil layer. In that sense, these
models relate the water content to a physical optical property rather
than the change in reflectance at one wavelength and the observation
is potentially independent of the soil type (Haubrock, Chabrillat,
Lemmnitz, & Kaufmann, 2008). Models introduced by Twomey,
Bohren, and Mergenthaler (1986), Bach and Mauser (1994) and

Philpot (2010) are among a few models in the third class which were
fully formulated based on physics of radiative transfer. These models
usually suffer from difficult-to-determine input information.

We could also consider an additional class of models being devel-
oped nowadays based on machine learning techniques such as artificial
neural networks and support vector machine (Hassan Esfahani,
Torres-Rua, Jensen, & McKee, 2015; Zaman, McKee, & Neale, 2012).
Commonly considering both optical and thermal bands, these models
provide powerful tools for inferring surface soil moisture in complex/
heterogeneous media (e.g. rough vegetated surfaces). However, these
models are fully black-box with no physical origin and hence require a
vast database for calibration and even then are limited to site-specific
applications.

In the following, we present a simple model with physically defin-
able parameters based on the Kubelka and Munk (1931) theory of re-
flectance. This model combines the benefits of both the first and third
classes simultaneously, as it is in the form of a simple regression
model, but is derived directly from a radiative transfer model and its pa-
rameters can be obtained either from fitting or from direct measure-
ment. As an added advantage, and supported by both theory and
experimental data, the proposed model reduces to a linear model at
short wave infrared (SWIR) wavelengths offering a straightforward
method for RS of soil moisture in these bands.

2. Theoretical considerations
2.1. Kubelka-Munk theory

Kubelka and Munk (1931) (KM hereinafter) developed a simple the-
ory describing radiative transfer in an absorbing and scattering layer,
considering a downward and an upward light propagation flux (I and
J, respectively), perpendicular to the layer (Fig. 1). The diffuse (volume)
reflectance could then be modeled incorporating both absorption by soil
particles and water films and light scattering due to differences in the
refractive index between soil particles and the surrounding water and
air. The KM model can be derived directly from the radiative transfer
equation (Sandoval & Kim, 2014; Thennadil, 2008) and thus has a
good physical basis underlying its simplicity.

The KM model assumes that: (i) the layer exhibits infinite lateral
extension (so that edge effects can be neglected), (ii) the light absorbing
and scattering particles are uniformly distributed in the layer,
(iii) particle dimensions are much smaller than the layer thickness,
d, and (iv) the whole layer is homogeneously illuminated with a
monochromatic diffuse light source (Ciani, Goss, & Schwarzenbach,
2005).
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Fig. 1. Visualization of the Kubelka-Munk model, where I and J are the two light fluxes in
opposite directions and k and s are the absorption and scattering coefficients, respectively
(after Ciani et al., 2005).
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