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Full waveform lidar has a unique capability to characterise vegetation in more detail than any other practical
method. The reflectance, calculated from the energy of lidar returns, is a key parameter for a wide range of appli-
cations and so it is vital to extract it accurately. Fifteen separate methods have been proposed to extract return
energy (the amount of light backscattered from a target), ranging from simple to mathematically complex, but
the relative accuracies have not yet been assessed. This paper uses a simulator to compare all methods over a
wide range of targets and lidar system parameters. For hard targets the simplest methods (windowed sum,
peak and quadratic) gave themost consistent estimates. They did not have high accuracies, but low standard de-
viations show that they could be calibrated to give accurate energy. This may be why some commercial lidar de-
velopers use them, where the primary interest is in surveying solid objects. However, simulations showed that
these methods are not appropriate over vegetation. The widely used Gaussian fitting performed well over hard
targets (0.24% rootmean square error, RMSE), as did the sum and splinemethods (0.30%RMSE). Over vegetation,
for large footprint (15m) systems, Gaussian fitting performed the best (12.2%RMSE) followed closely by the sum
and spline (both 12.7% RMSE). For smaller footprints (33 cm and 1 cm) over vegetation, the relative accuracies
were reversed (0.56% RMSE for the sum and spline and 1.37% for Gaussian fitting). Gaussian fitting required
heavy smoothing (convolution with an 8 m Gaussian) whereas none was needed for the sum and spline.
These simpler methods were also more robust to noise and far less computationally expensive than Gaussian
fitting. Therefore it was concluded that the sum and spline were the most accurate for extracting return energy
fromwaveform lidar over vegetation, except for large footprint (15m), where Gaussian fitting was slightly more
accurate. These results suggest that small footprint (≪15 m) lidar systems that use Gaussian fitting or proprie-
tary algorithms may report inaccurate energies, and thus reflectances, over vegetation. In addition the effect of
system pulse length, sampling interval and noise on accuracy for different targets was assessed, which has impli-
cations for sensor design.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Lidar has been shown to be a valuable tool for characterising vege-
tation, offering many advantages over other techniques due to its non-
destructive measurement of structural and spectral information
(Dubayah & Drake, 2005). Maps of global forest height have been

determined from the spaceborne ICESat (Harding & Carabajal, 2005;
Los et al., 2012), forest cover can be accurately derived from airborne
lidar without the need for site-specific calibration (Armston et al.,
2013), airborne lidar's structural information improves land cover
classification accuracy (Mallet, Bretar, Roux, Soergel, & Heipke, 2011),
airborne and terrestrial laser scanners (TLS) have also been used to
characterise vegetation canopies and their effect on hydrological pro-
cesses (Musselman, Margulis, & Molotch, 2013; Reid et al., 2014) and
TLS can accuratelymeasurewoody volume (Raumonen et al., 2013), po-
tentially allowing rapid biomass measurement. All of these studies rely
on accurately extracting target properties from lidar signals.
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Lidar directly measures the 3D distribution of energy reflected from
a target surface. The vast majority of research has focused on determin-
ing the range to a single feature (Stilla & Jutzi, 2008; Wagner, Ullrich,
Melzer, Briese, & Kraus, 2004), with very few studies assessing the accu-
racy of the estimated return energy (backscattered radiation from the
target). Recent research has tried to identify targets through clutter,
such as the ground surface under vegetation (Jalobeanu & Gonçalves,
2014; Los et al., 2012), but they still assumed that there was a hard fea-
ture that lay at a single range. Commercial lidar systems have been
optimised to measure the range to hard features.

The return energy contains useful information about complex
targets, such as vegetation. The amount of energy returned can be
used to calculate the size of illuminated objects (Hancock et al., 2014;
Ramirez, Armitage, & Danson, 2013) and determine canopy cover
(Armston et al., 2013). The return energy of certain wavelengths is re-
lated to leaf biochemistry and can be used to calculate leaf moisture
(Gaulton, Danson, Ramirez, & Gunawan, 2013) and chlorophyll content
(Nevalainen et al., 2014). It has been shown that lidar return energy
is the most important lidar metric when classifying land cover type
(Mallet et al., 2011; Neuenschwander, Magruder, & Tyler, 2009). There-
fore an accurate method for retrieving return energy from lidar is vital
for making physically based measurements of vegetation. In addition,
vegetation canopies contain many small elements, making it likely
that a lidar beamwill hit multiple targets within a single return feature,
potentially violating the assumptions of methods developed for single
targets.

Many previous papers have assessed the accuracy of the range esti-
mate from lidar data (Stilla & Jutzi, 2008; Wagner et al., 2004). Fewer
have explored the accuracy of return energy and these previous energy
extraction studies are described in Section 3.4. This study deals exclu-
sively with methods for determining the energy of a return, with a
view to improving the accuracy of physically based measurement
methods of vegetation (which require no site specific calibration). This
study assessed themethods in terms of their return energy accuracy, ro-
bustness and computational expense for both single, hard returns and
for complex, vegetation returns. Return energy accuracy was assessed
in terms of absolute accuracy and also in terms of consistency, as the
value retrieved by a method can be calibrated to give true energy as
long as there is a consistent, well defined relationship between the re-
trieved value and energy. Computational efficiency is an important con-
sideration as Jalobeanu and Gonçalves (2014) state that “the best
performing methods are too computationally intensive to be used on
large datasets”.

Empirical methods have been proposed to characterise vegeta-
tion without the need for target biophysical parameters to be directly
derived from the lidar signal, e.g. Height Of Median Energy, HOME
(Drake et al., 2002) and the leading edge extent (Lefsky, Keller, Yong,
de Camargo, & Hunter, 2007). However these empirical methods

require local calibration. Physically based methods, directly extracting
target properties from the lidar signal, require no external calibration
and so can be applied globally. The resulting parameters have a physical
meaning that can be directly measured on the ground such as canopy
cover, tree height or leaf area.

Fig. 1 shows maps generated using two different methods for
determining return strength from a Leica ALS50-II airborne lidar.
Fig. 1(a) shows the intensity reported by Leica's proprietary dis-
crete return algorithm (sum of multiple returns per beam) whilst
Fig. 1(b) shows the sum of full waveform intensity. For both, the return
strength was calculated per beam and averaged into a 2m raster. These
lead to very different outputs, with forests providing a stronger return
in Fig. 1(b) than (a) and so researchers might draw different conclu-
sions about the biophysical nature of the vegetation depending on
whichmethod they used. This paper will explore the different methods
to measure lidar return energy and which are more accurate over dif-
ferent surfaces. Several new lidar systems optimised for vegetation are
in development covering terrestrial, airborne and satellite based sys-
tems (Danson et al., 2014; Douglas et al., 2015; Murooka et al., 2013;
Wallace, Nichol, & Woodhouse, 2012) and so this type of data will be-
come ever more common.

2. Lidar systems

There are two broad classes of lidar, time of flight (TOF) and phase
shift systems. Phase shift systems have been shown to struggle at deter-
mining if and where a hit occurs in diffuse targets, such as vegetation
due to their assumption that all reflected light comes from a single sur-
face (Newnham, Goodwin, Armston, Muir, & Culvenor, 2012), and so
these systems will not be covered here. TOF lidar systems emit a short
pulse of light and measure the reflected energy, allowing the range to,
and apparent reflectance of, the target surface to be determined.Within
TOF lidars there are two further categories, discrete return and full
waveform systems. Discrete return systems use proprietary algorithms
to extract the range and energy of one or more targets along the laser
beam's path (Disney et al., 2010; Jalobeanu & Gonçalves, 2012). Full
waveform systems record all the reflected energy as a function of
range, giving a more complete description of the scattering event
(Harding, Blair, Garvin, & Lawrence, 1994) and allowing more accurate
measurement of target properties over diffuse targets such as vegeta-
tion (Hancock, Disney, Muller, Lewis, & Foster, 2011). The data and pro-
cessing requirements are much greater for full waveform than for
discrete return lidar, although some doubts have been raised about
the accuracy of range and energy derived from the proprietary discrete
return algorithms over vegetation (Disney et al., 2010). This study fo-
cuses on methods for full waveform lidar, where the energy can be ex-
tracted from waveform lidar in a number of ways, ensuring that the
optimal information is available for the task.

(a) Discrete return intensity (b) Full wave form sum

Fig. 1. Two different ways to measure return strength from lidar. The site is an area in Luton, UK, with forest, grassland and buildings.
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