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We investigate the characteristics of regolith through the application of statistical learning to diverse layers of ter-
restrial, continental-scale remote sensing data. This combination allows us to explore the multiple influences of
bedrock, climate, biota, landscape and time on regolith development and properties: an interdisciplinary geosci-
ence modeling problem. From a wide variety of available data for Australia, we select remotely sensed geophys-
ical, geomorphological and mineralogical inputs with good spatial coverage. We use Self-Organizing Maps
(SOM), a topologically constrained unsupervised statistical learning algorithm, to characterize the geophysical
and mineralogical signatures of regolith and bedrock. Regolith materials cover more than 80% of the Australian
continent, range in age from Precambrian to Quaternary and vary in thickness from less than a meter to more
than a kilometer. The diversity of regolith cover type and character across Australia provides an opportunity to
demonstrate knowledge discovery from remote sensing data. The outputs of our SOM analysis are combined
with ground observations from locations showing naturally occurring anomalous concentrations of nickel, tin
and uranium. We identify a minimum number of natural clusters indicating subtle but significant differences
in regolith and bedrock mineralization characteristics. Our results show that SOM identifies spatially contiguous
regions representing unique regolith and bedrock materials. In the Yilgarn Craton we observe key differences in
landscape character, density of the crust, and relative abundance of radioactive elements and alumino-silicate
and ferric oxide minerals. These properties discriminate between nickel-prospective residual deeply weathered
regolith formed onmafic and/or ultramafic bedrock and uranium-prospective Cainozoic paleochannels contain-
ing felsic bedrock source materials. National-scale data are publicly available for many continental regions, as in
the Australian example, and our approach has general applicability. We demonstrate that remote sensing data
may be used to understand the regolith, revealing the interplay between environmental history and bedrock
character at regional scales, and differences between residual and transported regolith, provenance of sourcema-
terials and their relative ages.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Regolith is the mechanically and/or chemically weathered residual
(in situ) or transported unconsolidated or secondarily re-cementedma-
terials covering fresh rock (Scott & Pain, 2008; Taylor & Butt, 1998). Reg-
olith is found on most terrestrial and extra-terrestrial surfaces (Clarke,
2003) and is the product of interactions between the lithosphere, bio-
sphere, hydrosphere and atmosphere (Taylor & Eggleton, 2001). Its
physical and chemical properties are influenced by climate, parent ma-
terial, landscape and biological activity through time. Hence, the

geochemical, mineralogical and morphological characteristics of rego-
lith can be used to infer the parent rock from which it was derived
and to unravel the prevailing environmental conditions contributing
to its development (Taylor & Butt, 1998).

Australia provides researchers with unique opportunities and chal-
lenges with respect to understanding the origins of, and influences on,
regolith. Approximately 80% of the Australian continent is mantled by
regolith (Pain, Pillans, Roach, Worrall, & Wilford, 2012) extending to
depths of less than a meter to more than a kilometer (Scott & Pain,
2008) and ranging in age from the Proterozoic-Late Proterozoic to the
Quaternary/Holocene (Taylor & Butt, 1998).Modern landforms and reg-
olith can be superimposed on ancient, preserved landscapes (and rego-
lith) formed under different conditions to those currently observed
(Pillans, 2008).
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An unprecedented volume and variety of publicly available pre-
competitive geoscience remote sensing data covering the Australian
continent is now publically available. For example, Geoscience
Australia (http://www.ga.gov.au/) provides access to interpolated
and leveled gravity, airborne geophysical data, e.g., Total Magnetic
Intensity (TMI) andGamma-Ray Spectrometry (GRS), andDigital Eleva-
tion Models (DEM), and along with CSIRO (http://www.csiro.au/)
distributes Advanced Spaceborne Thermal Emission and Reflection
(ASTER) geoscience products representing surface mineralogical
characteristics. CSIRO also provides a range of DEM derivatives, e.g., To-
pographic Wetness Index (TWI), Multi-resolutional Valley-Bottom
Flatness (MrVBF) or Ridge-Top Flatness (MrRTF) indices, slope and
aspect. These data provide opportunities with which to gain an
understanding of ancient climatic conditions, biological activity,
landscape evolution and the nature and characteristics of large but
subtle geophysical and geochemical mineralization footprints
(Taylor & Butt, 1998). Nevertheless, unraveling the contribution of
bedrock, climate, landscape and biota to regolith development and
mineralization potential by integrating of large volume of multivar-
iate geoscience data is a challenging task.

1.1. Statistical learning

Statistical learning offers analysts knowledge-driven (supervised)
and data-driven (unsupervised) approaches for understanding inte-
grated data. In the data-driven case, observations representing a ran-
dom vector X, having joint probability density Pr(X), are presented to
the unsupervised learning algorithm. The aim is to infer the proper-
ties of this probability density without prior conditions on the ar-
rangement of data (Hastie, Tibshirani, & Friedman, 2009; Witten &
Frank, 2005). Unsupervised learning algorithms are useful for find-
ing natural groups or clusters of similar samples as indicated by re-
gions of high density within Pr(X) (Hastie et al., 2009; Marsland,
2009; Xu & Wunsch, 2005). Unlike supervised learning, the validity
of the results from unsupervised learning cannot be evaluated
against reference information representing sample associations.
Therefore, success is usually assessed by interrogating the character-
istics of input variables in conjunction with ancillary data and/or
knowledge of the phenomena under investigation (Hastie et al.,
2009; Ripley, 1996).

1.2. Self-Organizing Maps

Self-Organizing Maps (SOM; Kohonen, 1982, 2001) are a type of
an unsupervised learning algorithm based on the principles of non-
linear statistical models known as Neural Networks (Penn, 2005;
Ripley, 1996). SOM employs competitive learning to reduce n-
dimensional (nD) multivariate data to two dimensions (Bação,
Lobo, & Painho, 2008; Hastie et al., 2009; Klose, 2006). This is
achieved using vector quantization andmeasures of vector similarity
as a means of “mapping” nD samples to cells (nodes) arranged in a
2D topological space (Bação et al., 2008; Hastie et al., 2009;
Kohonen, 2001). The topology of neighboring nodes in 2D space indi-
cates their relative similarities in nD space. After training, SOM nodes
are represented by an nD vector (code-vector) of the same dimen-
sionality as the input data (Bação et al., 2008). This code-vector sum-
marizes the characteristics of samples associated with a particular
node. Interrogation of the SOM component planes aids visualization
of dominant patterns and structures present within multivariate
data (Bierlein, Fraser, Brown, & Lees, 2008; Penn, 2005; Ultsch &
Herrmann, 2005; Wehrens & Buydens, 2007).

To implement SOM an m × n dimension matrix is created from the
input data with m rows of samples and n columns of variables X =
(x1, x2,…, xn)∈ℜn. SOMnodes are trained from randomly sampled ref-
erence (seed-) vectorsMi of equal length to n, via an iterative two-stage
process. Firstly, seed-vectors are shown to the network and compared

to all xn that fall within a predefined radius of assessment, commonly
using a Euclidean distance metric:

X−Mk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

xi−mið Þ2
vuut : ð1Þ

The closest seed-vector, deemedmost similar to the considered xn, is
the best-matching unit (node) Mc according to:

X−Mck k ¼ min
i

X−Mik kf g: ð2Þ

Secondly, theweights ofMc and its neighboringMiwithin the search
neighborhood N(t) of radius r, are adjusted to more closely correspond
to the properties of xn. The learning rate factor a(t) controls the rate of
change of Mi during the adjustment process. These steps are repeated
while reducing N(t) and a(t) for a given iteration t. In this way, Mi be-
come trained nodes linked to code-vectors that summarize the charac-
teristics of associated input samples (Bierlein et al., 2008; Fraser &
Dickson, 2007; Peeters, Lobo, & Dassargues, 2007).

SOM has been shown to be useful for identifying, visualizing and
analyzing coherent groups within multivariate geoscience data. For
example, Penn (2005) employed SOM to efficiently classify major el-
ement geochemical data and hyperspectral reflectance data to inter-
pret the petrogenetic characteristics of igneous rocks. Peeters et al.
(2007) used SOM to investigate the hydrochemical properties of
confined aquifers. Bierlein et al. (2008) applied SOM to databases
of mineral deposits and major faults using SOM. Their comparisons
suggested that major differences between deposit type, host-rock
mineralization style could be identified. Bedini (2009, 2012) used
SOM to identify exposed lithologies and alteration halos in sparsely
vegetated high-latitude regions from HyMap™ imagery. Iwashita,
Friedel, Filho, C. R. de S, and Fraser (2011) integrated airborne geo-
physical and soil geochemical data with SOM to investigate geo-
chemical weathering processes. Carneiro, Fraser, Croacutesta, Silva,
and Barros (2012) mapped geological units from airborne geophysi-
cal data in a heavily vegetated region of the Amazon Basin using
SOM. Abedi, Norouzi, and Torabi (2013) successfully employed
SOM to generate clusters representing varying degrees of mineral
prospectivity for a copper (Cu) deposit in Iran. Cracknell, Reading,
and McNeill (2014) applied SOM to soil geochemical data linked to
samples representing discrete volcanic units as a means of mapping
volcanic-hosted massive sulfide alteration halos and subtle varia-
tions in their primary composition.

1.3. Study aims

This study builds on the analysis documented in Cracknell and
Reading (2014), which demonstrated the use of publicly available
continental-scale geophysical and mineralogical remote sensing data
in conjunctionwith SOM. The results of that study identified and visual-
ized patterns in multivariate geophysical and mineralogical remote
sensing data that relate to regolith and bedrock geological materials.
In this contribution, we extend our analysis to characterize spectral
and spatial correlations in these data. Our analysis provides a context
for mapping regolith, bedrock mineralization footprints and multiple
influences on landscape evolution and environment.

Mineral commodities provide spatially extensive reference infor-
mation, and we use nickel (Ni), tin (Sn) and uranium (U) as case
study examples for our SOM analyses. Mineral deposits of Ni, Sn
and U form in contrasting geological environments and are mined
from both bedrock and regolith materials. Additional information
on typical tectonic settings and geological characteristics of Ni, Sn
and Umineralization in Australia is given in Appendix A—Mineral de-
posit characteristics.

87M.J. Cracknell et al. / Remote Sensing of Environment 165 (2015) 86–99

http://www.ga.gov.au/
http://www.csiro.au/


Download English Version:

https://daneshyari.com/en/article/6346064

Download Persian Version:

https://daneshyari.com/article/6346064

Daneshyari.com

https://daneshyari.com/en/article/6346064
https://daneshyari.com/article/6346064
https://daneshyari.com

