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The inverse ocean color problem, i.e., the retrieval of marine reflectance from top-of-atmosphere (TOA) reflec-
tance, is examined in a Bayesian context. The solution is expressed as a probability distribution that measures
the likelihood of encountering specific values of the marine reflectance given the observed TOA reflectance. This
conditional distribution, the posterior distribution, allows the construction of reliable multi-dimensional confi-
dence domains of the retrieved marine reflectance. The expectation and covariance of the posterior distribution
are computed, which gives for each pixel an estimate of the marine reflectance and a measure of its uncertainty.
Situations for which forward model and observation are incompatible are also identified. Prior distributions of
the forwardmodel parameters that are suitable for use at the global scale, aswell as a noisemodel, are determined.
Partition-based models are defined and implemented for SeaWiFS, to approximate numerically the expectation
and covariance. The ill-posed nature of the inverse problem is illustrated, indicating that a large set of ocean
and atmospheric states, or pre-images, may correspond to very close values of the satellite signal. Theoretical
performance is good globally, i.e., on average over all the geometric and geophysical situations considered, with
negligible biases and standard deviation decreasing from 0.004 at 412 nm to 0.001 at 670 nm. Errors are smaller
for geometries that avoid Sun glint and minimize air mass and aerosol influence, and for small aerosol optical
thickness and maritime aerosols. The estimated uncertainty is consistent with the inversion error. The theoretical
concepts and inverse models are applied to actual SeaWiFS imagery, and comparisons are made with estimates
from the SeaDAS standard atmospheric correction algorithm and in situ measurements. The Bayesian and SeaDAS
marine reflectance fields exhibit resemblance in patterns of variability, but the Bayesian imagery is less noisy and
characterized by different spatial de-correlation scales. Experimental errors obtained from match-up data are
similar to the theoretical errors determined from simulated data. Regionalization of the inversemodels is a natural
development to improve retrieval accuracy, for example by including explicit knowledge of the space and time
variability of atmospheric variables.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The classic approach to ocean-color remote sensing from space
(Antoine & Morel, 1999; Gordon, 1997; Wang, 2010) consists of
(i) estimating the aerosol reflectance in the red and near infrared
where the ocean can be considered black (i.e., totally absorbing), and
(ii) extrapolating the estimated aerosol reflectance to shorter wave-
lengths. The water reflectance is then retrieved by subtraction. This
process is referred to as atmospheric correction. Depending on the
application context, the retrieved water reflectance may then be related
to chlorophyll-a concentration using a bio-opticalmodel, semi-analytical
or empirical (e.g., O'Reilly et al., 1998), or used in inverse schemes of
varied complexity to estimate optical properties of suspended particles
and dissolved organic matter (see Lee, 2006).

The process of atmospheric correction is inherently difficult to achieve
with sufficient accuracy, since only a small fraction (10% or less) of the
measured signal may originate from the water body. Furthermore, the
surface and atmospheric constituents, especially aerosols,whose optical
properties are influential, exhibit high space and time variability. How-
ever this two-step approach has been successful, and it is employed in
the operational processing of imagery from most satellite ocean-color
sensors. Variants and improvements to the classic atmospheric correc-
tion scheme have been made over the years, especially to deal with
non-null reflectance in the red and near infrared, a general situation
in estuaries and the coastal zone. The improvements in these regions
consider spatial homogeneity for the spectral ratio of the aerosol and
water reflectance in the red and near infrared (Ruddick, Ovidio, &
Rijkeboer, 2000) or for the aerosol type, defined in a nearby non-
turbid area (Hu, Carder, &Muller-Karger, 2000). They also use iterative-
ly a bio-optical model (Bailey, Franz, & Werdell, 2010; Siegel, Wang,
Maritorena, & Robinson, 2000; Stumpf, Arnone, Gould, Martinolich, &
Ransibrahmanakul, 2003), exploit differences in the spectral shape of
the aerosol and marine reflectance Lavender, Pinkerton, Moore, Aiken,
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and Blondeau-Patissier (2005), or make use of observations in the
short-wave infrared, where the ocean is black, even in the most turbid
situations (Bo-Cai, M.M.J.A.Z., & D.C.O., 2000; Oo et al., 2008; Wang,
Son, & Shi, 2009; Wang, Tang, & Shi, 2007).

Other empirical approaches to atmospheric correction have
been proposed in the literature. In Frouin, Deschamps, Gross-Colzy,
Murakami, and Nakajima (2006), the TOA reflectance in selected spec-
tral bands is combined linearly, so that the atmosphere/surface effects
are reduced substantially or practically eliminated. This algorithm
assumes that the perturbing signal, smooth spectrally, can be modeled
by a low-order polynomial, and the polynomial is selected so that the
linear combination is sufficiently sensitive to chlorophyll-a concentra-
tion. In Steinmetz, Deschamps, and Ramon (2011), the atmospheric
reflectance is approximated by a polynomial with non-spectral and
spectral terms that represent atmospheric scattering and surface reflec-
tion, including adjacency effects from clouds and white surfaces. The
water reflectance is modeled as a function of chlorophyll concentration
and a backscattering coefficient for non-algal particles, and spectral
matching is applied to tune the atmospheric and oceanic parameters.

Another approach to satellite ocean-color inversion is to determine
simultaneously the key properties of aerosols and water constituents
by minimizing an error criterion between the measured reflectance
and the output of a radiative transfer model (e.g., Chomko & Gordon,
1988; Kuchinke, Gordon, Harding, & Voss, 2009; Land & Haigh, 1996;
Stamnes et al., 2007). This belongs to the family of deterministic solu-
tions to inverse problems; for a mathematical treatment of the subject,
we refer the interested reader to Engl, Hanke, and Neubauer (1996).
Through systematic variation of candidate aerosol models, aerosol
optical thickness, hydrosol backscattering coefficient, yellow substance
absorption, and chlorophyll-a concentration, or a subset of those
parameters, a best fit to the spectral top-of-atmosphere reflectance
(visible and near infrared) is obtained in an iterative manner. The
advantage of this approach, compared with the standard, two-step
approach, resides in its ability to handle both Case 1 and Case 2 waters.
It also can handle both weakly and strongly absorbing aerosols, even if
the vertical distribution of aerosols, an important variable in the pres-
ence of absorbing aerosols, is not varied in the optimization procedure.
A main drawback is that convergence of the minimizing sequence may
be slow in some cases, making it difficult to process large amounts of
satellite data. To cope with this issue, a variant proposed in Brajard,
Jamet, Moulin, and Thiria (2006) and Jamet, Thiria, Moulin, and
Crépon (2005) consists of approximating the operator associated to
the radiative transfer (RT)model by a function which is faster in execu-
tion than the RT code, e.g., by neural networks. Still, convergence speed
of the minimization algorithm remains an issue. It may also not be easy
to differentiate absorption by aerosols and water constituents like
yellow substances, processes that tend to decrease the TOA signal in a
similarway. As a result, the retrievalsmay not be robust to small pertur-
bations on the TOA reflectance. This reflects the fact that atmospheric
correction is an ill-posed inverse problem; in particular, different values
of the atmospheric and oceanic parameter can correspond to close
values of the TOA reflectance. In the context of deterministic inverse
problem, stability of the solution can be obtained by regularization
(see Engl et al., 1996), but to the best of our knowledge, regularization
strategies are not implemented in the approaches described above.

Another route is to cast atmospheric correction as a statistical inverse
problem and to define a solution in a Bayesian context. In this setting, one
group of approaches consists of estimating, based on simulations, a func-
tion performing amapping from the TOA reflectance to themarine reflec-
tance. In Shroeder, Behnert, Schaale, Fischer, and Doerffer (2007), a
neural network model is fitted to simulated data. A similar approach is
studied in Gross, Colzy, Frouin, and Henry (2007a,b), where the (finite-
dimensional) TOA signal, corrected for gaseous absorption andmolecu-
lar scattering, is first represented in a basis such that the correlation be-
tween the ocean contribution and atmosphere contribution is, to some
extent, minimized. This representation of the TOA reflectance makes

the function approximation problem potentially easier to solve. In
these studies, data are simulated for all the observation geometries. In
Frouin and Pelletier (2007) and Pelletier and Frouin (2004, 2005), the an-
gular information is decoupled from the spectral reflectance, and atmo-
spheric correction is considered as a collection of similar inverse
problems indexed by the observation geometry. These methods can all
be formalized in a Bayesian context; see Kaipio and Somersalo (2004)
and Tarantola (2005) for an introduction on the subject.

The Bayesian approach to inverse problem consists of first specifying a
probability distribution, called the prior distribution, on the input param-
eters (atmospheric andoceanic) of the RTmodel. As thename implies, the
prior distribution reflects prior knowledge that may be available before
the measurement of the TOA reflectance. A probabilistic modeling of
any perturbation of the TOA reflectance is also typically considered, in
the formof an additive randomnoise. The solution to the inverse problem
is then expressed as a probability distribution which, in the present con-
text of atmospheric correction, measures the likelihood of encountering
values of water reflectance given the TOA reflectance (i.e., after it has
been observed). The posterior distribution is a very rich object, and its
complete reconstruction and exploration can rapidly become prohibitive
from the computational side. Instead, one may reduce the ambition to
extracting useful quantities, like its expectation and covariance. In the
present setting of atmospheric correction, the expectation provides an
estimate of the water reflectance, while the covariance allows a quantifi-
cation of uncertainty in the water reflectance estimate.

In this paper, we address ocean-color remote sensing in a Bayesian
context. We make the following contributions. First of all, we formulate
the atmospheric correction problemat a certain depthof physicalmodel-
ing, and we use the angular decoupling as in Frouin and Pelletier (2007)
and Pelletier and Frouin (2004, 2005). Prior distributions suitable for use
at a global scale, as well as a noise model, are determined. Second, we
define and implement numerical approximations of the expectation and
covariance of the posterior distribution (i.e., the complete Bayesian solu-
tion). The procedure is developed for the marine reflectance as well as
for the atmospheric parameters, hence these quantities are retrieved
simultaneously from the TOA reflectance, and measures of uncertainties
are provided along with the retrievals. The modeling choices in this
work have been governed by keeping the execution time of the models
small, and by having theoretical guarantees on the performance. Let us
point out that it is a forward model which is inverted and that, as precise
as the physical modeling can be, it is important to detect cases where the
model is limited in view of the measured TOA reflectance. So as a final
contribution, we define and implement a model, based on level sets, to
detect these situations where the retrievals become meaningless.

The paper is organized as follows. In Section 2, the inverse problem
of atmospheric correction is defined, and the Bayesian solution is formu-
lated. In Section 3, the inverse applications that will be implemented in
practice are specified. In Sections 4 and 5, the modeling of the satellite
signal and the approximation of the forward operator are described. In
Section 6, the practical implementation of the inverse applications is
detailed. Some technical details are gathered in Appendices A and B
at the end of the paper. In Section 7, performance is evaluated on simulat-
ed data, and the ill posed-ness of the inverse problem is illustrated and
discussed. In Section 8, the theoretical concepts and inverse models are
applied to Sea-viewing Wide Field-of view Sensor (SeaWiFS) imagery,
and comparisons aremadewith estimates fromthe standard atmospheric
correction algorithm and in-situ measurements. In Section 9, conclusions
are given about the Bayesian methodology in terms of performance,
robustness, and generalization, as well as a perspective on future work.

2. Bayesian approach to atmospheric correction

2.1. Problem position

Let Ltoa be the radiancemeasured by the satellite ocean-color sensor
in a given spectral band. Express Ltoa in terms of bidirectional reflectance
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