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Periodically inundatedwetlandswith high short-term surface variation require special approaches to assess their
composition and long-term change. To circumvent high uncertainty in single-date analyses of such areas, we
propose to characterize them as dynamic cover types (DCTs), or sequences of wetland states and transitions in-
formed by physically and ecologically plausible surface processes. This study delineated DCTs for one 2007–2008
flood cycle at Poyang Lake, the largest freshwaterwetland in China, using spatial and temporal orientationmodes
of extended principal components analysis (EPCA) and supervised object-based classification of multi-spectral
and radar image series. Classification accuracy was compared among three sets of attributes selected by
machine-learning optimization from object-level mean and standard deviations of: 1) image time series alone;
2) the most informative EPCA outputs alone and 3) image time series and EPCA results together. Classification
uncertainty was additionally assessed as low values of object's maximum class membership (b0.5). The highest
accuracy was achieved with a larger set of 33 attributes selected from combined time series and EPCA results
(overall accuracy 95.0%, kappa 0.94); however, accuracies with smaller sets of variables from input image series
or EPCA results alone were comparably high (93.1% and 94.7%, respectively). All three selected attribute sets in-
cluded standard deviations of image and/or EPCA values, suggesting the utility of object texture in dynamic class
discrimination. The highest classification uncertaintywas observedprimarily along themapped class boundaries,
in some cases indicating minor change trajectories for which prior reference data were not available. Results in-
dicate that DCTs provide a reasonable classification framework for complex and variable Poyang Lake wetlands
that can be facilitated by EPCA transformation of complementary remote sensing time series. Futurework should
test this approach over multiple change cycles and assess sensitivity of results to temporal frequency of input
image series, alternative variable selection algorithms and other remote sensors.

© 2014 Published by Elsevier Inc.

1. Introduction

Landscape ecosystems are never truly static; they constantly vary
due to physical processes, biological interactions, phenology and distur-
bance. For a given ecosystem property, the assumption of “change”
versus “no change” over a time frame of interest is important for
understanding long-term resilience and response to natural and anthro-
pogenic change drivers (Foley et al., 2005; Liu & Cai, 2011;
Neuenschwander & Crews, 2008). Remote sensing platforms greatly fa-
cilitate studies of landscape change by providing repeated monitoring
over large areas and locations with difficult ground access (Gong et al.,

2010; Ordoyne & Friedl, 2008; Ozesmi & Bauer, 2002; Rebelo, Finlayson
and Nagabhatla, 2009). However, the accuracy of detection and interpre-
tation of change may be constrained by spatial resolution, extent and ac-
quisition frequency of the data (Assendorp, 2010; Coppin, Jonckheere,
Nackaerts, Muys and Lambin, 2004; Liu & Cai, 2011; Lunetta, Johnson,
Lyon and Crotwell, 2004), and by the short-term variation of land surface
properties (Crews-Meyer, 2008; Dronova, Gong and Wang, 2011;
McCleary, Crews-Meyer and Young, 2008).

Traditional mapping approaches have often focused on static classes
representing discrete states of surface cover observable for extended
periods of time. The “change” is assumed to occur for a given location
if the highest-probability cover classes differ among successive points
in time, and various change detection techniques have been summa-
rized in several reviews (Coppin et al., 2004; Gong & Xu, 2003; Lu,
Mausel, Brondizio and Moran, 2004; Mas, 1999). However, both
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classification and change detection are challenging in rapidly varying
areas such as periodically inundated wetlands, where short-term sur-
face dynamics produce transitional states and fine-scale mixtures of
classes and may obscure long-term surface trends. Notably, such com-
plex landscapes often support unique ecological services and high bio-
logical diversity (Dudgeon et al., 2006; Gibbs, 2000; Ordoyne & Friedl,
2008; Wang et al., 2012) and thus call for alternative approaches to
characterize them in order to assess their response to climate change
and human activities.

Several strategies to characterize highly variable landscapes were
offered by previous research. One of them defines classes as static
cover types prevalent over the whole time range of the data but classi-
fied based on their multi-temporal signatures, such as in studies of crop
dynamics (Zhong, Hawkins, Biging and Gong, 2011) and in the National
Dynamic Land Cover Dataset for Australia (Lymburner et al., 2011). This
approach reveals class-specific phenological spectral trajectories (Wang
et al., 2012; Zhong et al., 2011) and early signals of potential state shifts
(Lymburner et al., 2011); however, “single class representation of
dynamic behavior” (Lymburner et al., 2011) may prohibit detection of
the actual changes between classes (Sun, Zhao, Gong, Ma and Dai,
2014).

With the second strategy, land-cover change pathways are derived
from multi-date images (Lawrence & Ripple, 1999; Liu & Cai, 2011;
Mertens & Lambin, 2000; Vågen, 2006) asmulti-temporal transition clas-
ses (Hess, Melack, Novo, Barbosa and Gastil, 2003) or as the outputs of
multi-date image series transformations with principal component anal-
ysis (PCA), Kauth–Thomas algorithm and other methods (Byrne,
Crapper and Mayo, 1980; Collins & Woodcock, 1996; Coppin, Nackaerts,
Queen and Brewer, 2001; Ribed & Lopez, 1995; Seto et al., 2002b). A
promising but under-explored strategy is using different forms of PCA
to highlight recurring temporal patterns in space (S-mode PCA), preva-
lent spatial patterns over time (T-mode) (Cattell & Murphy, 1973;
Richman, 1986), or shared temporal and spatial patterns among different
datasets (extended PCA, or EPCA; Neeti & Eastman, 2014).

The third type of studies aims to distinguish longer-term changes from
short-term variation caused by phenology or disturbance. Such analysis
may be implemented by comparing inter- and intra-annual land cover
changes as a panel approach described by Crews-Meyer (2008) and
McCleary, Crews-Meyer and Young (2008), or by fitting regression to
long-term data series and analyzing residuals for signals of non-recurring
disturbance and unusual events (Neuenschwander & Crews, 2008).

While all these approaches offer useful strategies for complex land-
scapes such as periodically flooded wetlands, they also highlight an
important challenge. Complex surface composition and dynamics may
result in a large number of detected unique change pathways, some of
which may not be physically plausible (Hess et al., 2003; Liu & Cai,
2011; Villa, Boschetti, Morse and Politte, 2012), representing error and
noise (McCleary et al., 2008). This issue may be addressed by using an-
cillary information in class definition, transforming the images to high-
light relevant patterns (Neeti & Eastman, 2014) and by reducing pixel-
level local heterogeneity using primitive objects as mapping units
(Chen, Hay, Carvalho and Wulder, 2012). In dynamic landscapes, peri-
odic processes often produce regimes of change, sometimes along the
gradients of change drivers such as inundation (Assendorp, 2010;
Lenssen, Menting, van der Putten and Blom, 1999). These regimes
may shape unique ecosystem types, functions and species assemblages
and thusmay beuseful in landscapemanagement, planning and conser-
vation (Parrott & Meyer, 2012; Watson, Luck, Spooner and Watson,
2014). We will refer to these regimes as “dynamic cover types”
(DCTs), or distinct sequences ofwetland cover states and transitions ob-
served within a given period of change cycle.

Delineation of dynamic classes may benefit from data transforma-
tions that accentuate both prevalent types of surface cover and key tran-
sitions— such as extended PCA searching for patterns recurring in both
space and time (Cattell & Murphy, 1973; Neeti & Eastman, 2014;
Richman, 1986). It may be also useful to map DCTs with object-based

image analysis (OBIA) where prior to classification, image pixels are
segmented into “objects” matching spatial entities (Blaschke, Lang,
Lorup, Strobl and Zeil, 2000; Dronova et al., 2011, 2012; Lyons, Phinn
and Roelfsema, 2012). Even small “primitive” objects have been
shown to improve classification accuracy relative to pixels by smooth-
ing local noise and enhancing class contrasts with non-spectral attri-
butes (Conchedda, Durieux and Mayaux, 2008; Grenier et al., 2007;
Kim, Warner, Madden and Atkinson, 2011; Lyons et al., 2012). Using
prior knowledge to define DCTs may facilitate differentiating among
long-term change and short-term variation for the processes of interest,
while novel change or sporadic disturbances can be detected as devia-
tions from DCT trajectories.

Our study aimed to delineate DCTs as major trajectories of annual
wetland change cycle at Poyang Lake, the largest freshwater lake-
wetland complex in China (Fig. 1). Dynamics of monsoon-driven inun-
dation (Andreoli et al., 2007; Qi et al., 2009), vegetation phenology
(Wang et al., 2012) and disturbance affect important ecological proper-
ties of this wetland, such as nutrient and greenhouse gas fluxes (Liu, Xu,
Lin and Zhang, 2013), habitat for migratory waterbirds including criti-
cally endangered species (Barzen, Engels, Burnham, Harris and Wu,
2009) and life cycle of the snail speciesOncomelania hupensis, the inter-
mediate host to the parasite Schistosoma japonica causing severe human
disease in the region and globally (Seto et al., 2002a). While “character-
istic” dynamics of Poyang Lake's surface are still insufficiently under-
stood (Feng et al., 2012; Sun et al., 2014), they are likely to change in
the near future due to hydrological effects of the Three Gorges Dam
upstream Yangtze River and local dams (Barzen et al., 2009; Finlayson,
Harris, McCartney, Young and Chen, 2010; Guo, Hu, Zhang and Feng,
2012). Remote sensing classifications of this area from single-date
images exhibit high uncertainty due to complex wetland cover and
frequent transitionalmixtures of classes (Dronova et al., 2011). These is-
sues call for new strategies to address spatial and temporal complexity
of this unique wetland ecosystem in order to improve the capacity for
monitoring and, ultimately, landscape-level modeling of its change.

We focused on one flood cycle from summer 2007 to spring 2008 and
seven dominant DCTs representing changes in water coverage, surface
composition and plant phenology informed by previous research
(Barzen et al., 2009; De Leeuw et al., 2006; Dronova et al., 2011, 2012;
Qi et al., 2009;Wang et al., 2012). Our specific objectiveswere to 1) deter-
mine whether ecologically informed Poyang Lake DCTs could be distin-
guished with multi-temporal multi-spectral and microwave radar
satellite images; and 2) assess the utility of S- and T-mode EPCA to high-
light prevalent wetland cover states and key transitions (Cattell &
Murphy, 1973; Neeti & Eastman, 2014; Richman, 1986) to facilitate DCT
mapping from these different data types. Given spatial complexity of Po-
yang Lake's surface,wemappedDCTsby supervised classification of prim-
itive image objects derived bymultiresolution segmentation of themulti-
date images. We further assessed the accuracy of DCT classifications with
different sets of discriminating variables based on the image time series
and EPCA outputs, assessed the uncertainty in class membership and
discussed the strategies to enhance DCT analyses and extend them to
multi-temporal framework in the future.

2. Methods

Our analysis was organized as follows (Fig. 2): we first performed the
T- and S-mode EPCA transformation of the input remote sensing data
and examined which spatial and temporal patterns in EPCA results
corresponded to DCTs (Table 1). We then segmented the input image
series into primitive objects and assigned training and test reference
samples for DCT mapping using field data and high-resolution imagery.
The statistics of training objects were examined to determine DCT class
differences in 1) temporal trajectories calculated from the input image se-
ries; and 2) EPCA component (T-mode) and loading (S-mode) images.
Next, we performed supervised object-based classification of DCTs
followed by assessments of classification accuracy and uncertainty.
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