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Airborne Light Detection and Ranging (LiDAR) and Landsat data were evaluated as auxiliary information with
the intent to increase the precision of growing stock volume estimates in field-based forest inventories. The
aim of the study was to efficiently utilize both wall-to-wall Landsat data and a sample of LiDAR data using
model-assisted estimation. Variables derived from the Landsat 7 ETM+ satellite image were spectral values of
blue, green, red, near infra-red (IR), and two shortwave IR (SWIR) bands. From the LiDAR data twenty-six height
and density based metrics were extracted. Field plots were measured according to a design similar to the 10th
Finnish National Forest Inventory, although with an increased number of plots per area unit. The study was
performed in a 30000 ha area of Kuortane, Western Finland. Three regression models based on different combi-
nations of auxiliary data were developed, analysed, and applied in the model-assisted estimators. Our results
show that adding auxiliary Landsat and LiDAR data improves estimates of growing stock volume. Very precise
results were obtained for the case where wall-to-wall Landsat data, LiDAR strip samples, and field plots were
combined; for simple random sampling of LiDAR strips the relative standard errors (RSE) were in the range of
1–4%, depending on the size of the sample. With only LiDAR and field data the RSEs ranged from 4% to 25%.
We also showed that probability-proportional-to-size sampling of LiDAR strips (utilizing predicted volume
from Landsat data as the size variable) led to more precise results than simple random sampling.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Forest resources are required for an increasing number of purposes
globally, including wood- and fibre-based raw materials, maintenance
of biodiversity, and mitigation of climate change (Mery et al., 2005).
As a consequence, the demands for information from forests are steadily
increasing (Kangas & Maltamo, 2006; UNECE and FAO, 2011). National
forest inventories (NFIs) have been established for a long time in
many countries (e.g. Tomppo et al., 2010). Normally, they are based
on statistical samples of field plots (McRoberts et al., 2009, 2010;
Woodall et al., 2009) as a means for ensuring trustworthy information,
i.e. information derived from estimators that are unbiased and have
high precision.

Field-based forest inventories have many advantages. However,
they become expensive when large sample size is required to reach
the needed levels of precision. Furthermore, sparse road networks or

other conditions in a country may prevent easy access to the plots.
Also, NFI information from field plots alone often leads to imprecise
estimates for small regions within a country. This has stimulated the
development of solutions where field plots and remotely sensed data
are combined in order to provide the required information (Holmström
et al., 2001; Maltamo et al., 2007; Næsset, 2004).

Lately, the REDD+mechanism (reducing emissions from deforesta-
tion and forest degradation; Brockhaus (2009)), which has been devel-
oped under the United Nations' Framework Convention on Climate
Change, has led to an even stronger focus on forest information and
NFIs, and on how to utilize remote sensing within NFIs, especially in
countries with poor infrastructure conditions. Several approaches
based on remote sensing have been developed and demonstrated ,
(e.g. Gobakken et al., 2012; Næsset et al., 2006; Nelson et al., 2009).
However, inventories that make use of auxiliary information from
remote sensing are not only relevant for developing countries and
REDD+ (e.g. Asner, 2009; Saatchi et al., 2011), but also for remote
areas in developed countries, such as Siberia and Alaska (e.g. Andersen
et al., 2009; Ene et al., 2012; Nelson et al., 2009). Further, in countries
with well-established field-based NFIs, sample-based combinations of
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field and remotely sensed data may offer new possibilities to make in-
ventories cost-efficient.

The problems involved in reaching good inventory solutions include
variable and sometimes limited information in remotely sensed data,
the need to combine remote sensing with field information in order to
obtain reliable results, the lack of adequate field samples, the need to
apply advanced statistical methods, and the challenge tomake the solu-
tions straightforward enough so that they can be easily operated in
practice.

Regarding the first issue, it is well known that remotely sensed data
only contain auxiliary information about a limited number of all the
variables that are typically addressed in NFIs. For example, land-use
classification can seldom be based on image data alone (Anderson,
1976; Lo & Choi, 2004; Shalaby & Tateishi, 2007). However, for some
important variables – for example tree biomass and volume – several
remote sensing techniques such as LiDAR and RADAR have great poten-
tial (e.g. Wu, 1987; Hyyppä & Hallikainen, 1996; Boudreau et al., 2008;
Asner et al., 2011; Næsset, 2011; Bollandsås et al., 2013). Thus, the focus
on biomass and carbon in many emerging inventories makes remote-
sensing-based solutions potentially very useful.

LiDAR data are known to provide auxiliary data that are highly cor-
related with growing stock volume, biomass and aboveground carbon
in forests (Hyyppä & Inkinen, 1999; Hyyppä et al., 2008; Næsset,
1997; Næsset, 2009, 2011; Næsset & Gobakken, 2008; Nelson et al.,
1988; Stephens et al., 2012). In many applications, LiDAR data have
been acquired wall-to-wall over the target forest areas and stand-
level estimates have been derived either based on the area method
(Næsset, 2011) or based on the identification of individual trees
(Hyyppä et al., 2001). For applications over large areas, such as coun-
tries, the acquisition of LiDAR data is prohibitively expensive; however,
the data acquisition can be carried out as part of a sampling scheme to
improve the precision of estimates. For example, Nelson et al. (2004)
used a profiling LiDAR to estimate the forest resources of Delaware
and Andersen et al. (2009) used data from an airborne laser scanner
to estimate forest resources within a region of Alaska.

The statistical inferencemay be eithermodel-based (e.g. McRoberts,
2010; Ståhl et al., 2011) or design-based (e.g. Gregoire et al., 2011). In
the design-based approach, model-assisted estimators (Gregoire et al.,
2011; Næsset et al., 2013) are typically used based on data from a
probability sample; the deviations between the model predictions and
the field reference data are calculated and used to correct the model
predictions. Main advantages of this approach are that all the attractive
properties of design-based inference can be utilized, while at the same
time, the LiDAR data and the model can improve the precision of esti-
mates substantially. Drawbacks include that a strict probability sample
from the entire population must be acquired and that mismatches
in geopositioning between field plots and remotely sensed data may
have a negative effect on the accuracy of estimators.

Several studies have been conductedwhere LiDAR samples and field
samples have been combined utilizing two-phase sampling andmodel-
assisted estimation (e.g. Gregoire et al., 2011; Næsset et al., 2011);
multi-spectral satellite data have sometimes been used to stratify the
target population in these studies. Results have highlighted the useful-
ness of LiDAR as auxiliary data, although in some cases the gain over tra-
ditional field sampling has been modest (e.g. Gobakken et al., 2012).
However, so far relatively few studies have been performed where sev-
eral sources of remotely sensed predictors have been utilized in connec-
tion with model-assisted estimators. Examples include Andersen et al.
(2012), who applied LiDAR and satellite data in a post-stratification
approach utilizing multilevel sampling, and Strunk et al. (2014), who
utilized several sources of remotely sensed data and compared linear
regression and k nearest neighbours (kNN) methods to link field refer-
ence data, LiDAR and Landsat data.

In developing this type of inventory the choice of sampling strategy
is important. It is well known (e.g Särndal et al., 1992) that auxiliary
information can be utilized both for improving the design, i.e. how the

sample is selected, and for improving the estimators, i.e. how the target
quantities are computed once data have been acquired. Most studies
so far have utilized fairly straightforward sampling designs, such as
simple random or systematic sampling of LiDAR strips that traverse
the entire study area (e.g. Andersen et al., 2009; Gobakken et al.,
2012). Auxiliary data have been used to improve the estimators.
However, as shown by Grafström et al. (2014), the potential gain
from choosing an appropriate sampling design may be substantial and
needs to be further evaluated.

The objective of this studywas to explore how three sources of infor-
mation that would typically be available in connection with LiDAR
sample surveys could be combined utilizing model-assisted estimation.
Our data were wall-to-wall Landsat data, strip samples of LiDAR data,
and field plots. We compare different cases of auxiliary data usage,
show how estimates as well as uncertainty estimates can be derived,
evaluate the effect of different sampling designs incorporating LiDAR,
and discuss the advantages and disadvantages of the proposed sampling
strategies. A novel feature of the study was that a strategy based on
probability-proportional-to-size sampling was evaluated for the selec-
tion of LiDAR strips. The study was performed in the Kuortane area in
the boreal forests of western Finland.

2. Materials

2.1. Study area

The Kuortane study area is located inwestern Finland in the southern
Ostrobothnia region (see Fig. 1). It is mainly covered by middle-aged
Scots pine boreal forest in the Suomenselkä watershed area. Norway
spruce and deciduous trees, mainly birches, usually occur as mixtures.
The landscape is composed of forests onmineral soils, peatlands drained
for forestry, open mires, and agricultural fields at lower elevations. The
terrain depressions are covered by lakes.

Non-forest areas – about one third of the total area – were masked
out using digital map data (Tomppo et al., 2008). The areawas tessel-
lated into 16 × 16m grid cells for which Landsat and LiDAR data were
acquired. Our population was 818017 grid cells corresponding to
20942 ha of forest.

2.2. Data

The material comprised three datasets: field data (Section 2.2.1),
airborne LiDAR data (Section 2.2.2), and Landsat 7 ETM+ data
(Section 2.2.3).

2.2.1. Field data
The field data were sampled using a modification of the design of

the Finnish NFI (Tomppo et al., 2008), where the sampling density was
significantly increased and the number of measured variables was some-
what reduced. The NFI is a sample-based inventory system that covers all
land-use classes andownership categories in Finland. The aimof theNFI is
to produce reliable informationon forest resources at national and region-
al level. The NFI is based on statistical sampling. The sampling design is
systematic cluster sampling. Here, the plotswere clustered into rectangu-
lar clusters of 18 plots,with 200mdistance betweenplotswithin clusters.
The distance between clusters was 3 500 m.

Each circular field plot has a radius of 9 m, so that the size of a plot
area corresponds to the grid cell size of the tessellated area. Trees with
a diameter at breast height (DBH) larger than 5 cm were measured as
tally trees. DBH, tree storey class and tree species were recorded for
each tally tree. Heightwasmeasured for one sample tree of each species
and storey class per plot. The height measurements were used to cali-
brate the height estimates of the tree species-specific height models
of Veltheim (1987). Volume models (Laasasenaho, 1982) were used to
estimate tree volumes. The tree-level volumes were then transformed
to volumes per hectare for each plot. The field plot locations were
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