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We developed a new algorithm called Tmask (multiTemporal mask) for automated masking of cloud, cloud
shadow, and snow for multitemporal Landsat images. This algorithm consists of two steps. The first step is
based on a single-date algorithm called Fmask (Function of mask) that initially screens most of the clouds,
cloud shadows, and snow. The second step benefits from the extra temporal information from the remaining
“clear” pixels and further improves the cloud, cloud shadow, and snow mask. Three Top Of Atmosphere (TOA)
reflectance bands (Bands 2, 4, and 5 — Landsat-7 band numbering) are used in a Robust Iteratively Reweighted
Least Squares (RIRLS) method to estimate a time series model for each pixel. By comparing model estimates
with Landsat observations for the three spectral bands, the Tmask algorithm is capable of detecting any
remaining clouds, cloud shadows, and snow for an entire stack of Landsat images. Generally, this algorithm
will not falsely identify land cover changes as clouds, cloud shadows, or snow, as it is capable of modeling land
cover change. The multitemporal images also provide extra information for better discrimination of cloud and
snow, which is difficult for single-date algorithm. A snow threshold is derived for Band 5 TOA reflectance for
each pixel at each specific time based on a modified Norwegian Linear Reflectance-to-Snow-Cover (NLR) algo-
rithm. By comparing the results of Tmaskwith a single-date algorithm (Fmask) formultitemporal Landsat images
located at Path 12 Row 31, significant improvements are observed for identification of clouds, cloud shadows,
and snow. The most significant improvement is observed for cloud shadow detection. Many of the errors in
cloud, cloud shadow, and snow detection observed in Fmask are corrected by the Tmask algorithm. The goal is
development of a cloud, cloud shadow, and snow detection algorithm that results in a multitemporal stack of
images that is free of “noise” factors and thus suitable for detection of land cover change.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Landsat data has been widely used in remote sensing because of
its medium spatial resolution (Woodcock & Strahler, 1987), accurate
radiometric calibration (Chander, Markham, & Helder, 2009), high geo-
metric precision (Lee, Storey, Choate, & Hayes, 2004; Masek, Honzak,
Goward, Liu, & Pak, 2001), and long historical record (Markham,
Storey, Williams, & Irons, 2004). The policy providing free access to
Landsat data has made Landsat data even more popular (Woodcock
et al., 2008) and has completely revolutionized the utilization of Landsat
data (Wulder, Masek, Cohen, Loveland, & Woodcock, 2012). Take
change detection as an example: previously, we detected land cover
change by comparing two dates of clear Landsat images (Collins &
Woodcock, 1996; Healey, Cohen, Yang, & Krankina, 2005; Masek et al.,
2008), but now algorithms use tens (Huang, Goward, et al., 2010;
Huang, Thomas, et al., 2010; Kennedy, Cohen, & Schroeder, 2007;

Vogelmann, Tolk, & Zhu, 2009; Zhu, Woodcock, & Olofsson, 2012) or
even hundreds (Zhu & Woodcock, 2014) of Landsat images at the
same location. In this new data rich era, many preprocessing methods
that require user input are no longer practical. One of themost immedi-
ate problems is cloud, cloud shadow, and snow detection in Landsat
images.

Clouds, their shadows, and snow significantly influence optical
sensors like Landsat (Dozier, 1989; Irish, Barker, Goward, & Arvidson,
2006; Zhu & Woodcock, 2012). The brightening effect of clouds and
snow and the darkening effect of cloud shadows significantly influence
the reflectance of different spectral bands. Screening of clouds, cloud
shadows, and snow is especially crucial for remote sensing activities
like change detection because undetected cloud, cloud shadow, or
snow will likely result in identification of change where none occurred
(“false positive errors”). Considering the relatively small areas of land
cover change, this type of error significantly decreases change detection
accuracy. Therefore, identification of clouds, cloud shadows, and snow is
usually the first step in most remote sensing activities, and for certain
applications like change detection, very accurate detection is required.
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The detection of clouds, cloud shadows, and snow is not always easy,
especially if we want to detect them accurately. Clouds are notoriously
difficult to detect in Landsat images, due to the limited Landsat spectral
bands and the complexity of clouds themselves (Zhu & Woodcock,
2012). Many types of clouds exist, and each kind may have a different
spectral signature based on cloud properties like cloudoptical thickness,
particle effective radius, thermodynamic phase, and cloud height
(Platnick et al., 2003). Moreover the spectral signature of optically thin
clouds can be very similar to the signature of the Earth surfaces under-
neath, making them more difficult to separate from clear observations.
Cloud shadow detection can be difficult as well due to the spectral
similarity of cloud shadows to dark surfaces. Thin cloud shadows are
even more difficult to detect, as their spectral signature can be almost
the same as clear pixels due to the penetration of solar radiation.
Snowdetection is usually considered relatively easier as theNormalized
Difference Snow Index (NDSI) is very helpful for snow detection
(Salomonson & Appel, 2004). However, the NDSI values of snow pixels
can also change significantly depending on the grain size, the thickness
of snowpack, and the amount of impurities (Warren &Wiscombe, 1980;
Wiscombe & Warren, 1980). Moreover, most of snow-covered surfaces
are actually a mixture of snow and other land cover types. In forested
areas, snow is mixed with trees, and the NDSI values of these pixels
are much lower than pure snow pixels (Klein, Hall, & Riggs, 1998;
Xin et al., 2012). Additionally, snow and clouds can be very difficult to
separate in some circumstances. Certain clouds, such as ice clouds, can
have very similar spectral signatures to snow. Sometimes, it is almost
impossible to separate clouds from snow based only on the spectral
information.

To detect clouds, cloud shadows, and snow, one common approach
is to identify them manually based on hand-drawn polygons. This
works fine for processing a few Landsat images, but if we want to use
a large number of Landsat images, more automated algorithms are
needed. Recently, many new automated algorithms have been devel-
oped based on a single Landsat image (Huang, Goward, et al., 2010;
Huang, Thomas, et al., 2010; Irish et al., 2006; Masek et al., 2006;
Oreopoulos, Wilson, & Várnai, 2011; Roy et al., 2010; Scaramuzza,
Bouchard, & Dwyer, 2012; Zhu & Woodcock, 2012). The development
of these automated algorithms has made it possible for various kinds
of remote sensing activities that use many Landsat images. However,
for certain kinds of applications such as change detection, the single-
date masking algorithms are still not accurate enough. Some of the
single-date algorithmsare capable of providingmaskswithhigh accuracy,
but, given the relatively small areas of land cover change in most envi-
ronments, any errors in the masking process will pose major problems
for change detection. To remove clouds as much as possible, one solu-
tion for single-date algorithms is to use a lower threshold in detecting
clouds (Zhu & Woodcock, 2012). However, this will also overestimate
clouds and their shadows, and many clear pixels will be classified as
cloud or cloud shadow, making change detection algorithms difficult
for these pixels because of insufficient data.

To better detect clouds, cloud shadows, and snow, new algorithms
based on multitemporal images have been developed for a number of
satellite sensors, including Landsat (Goodwin, Collett, Denham, Flood,
& Tindall, 2013; Hagolle, Huc, Pascual, & Dedieu, 2010; Jin et al., 2013;
Wang, Ono, Muramatsu, & Fujiwara, 1999), Systeme Probatoire
d'Observation de la Terre (SPOT) (Tseng, Tseng, & Chien, 2008), Spinning
Enhanced Visible and Infrared Imager (SEVIRI) (Derrien & Le Gléau,
2010), and Moderate Resolution Imaging Spectroradiometer (MODIS)
(Liu & Liu, 2013; Lyapustin, Wang, & Frey, 2008). The basic idea of
these algorithms is that clouds, cloud shadows, and snow will cause
sudden changes to the reflectance, and by comparing a reference
image without clouds to the observed image, clouds, cloud shadows,
and snow will be easily detected. These algorithms are reported to
have higher accuracies in detecting clouds and their shadows.
Goodwin et al. (2013) found that their multitemporal algorithm will
produce better results in detecting cloud shadow compared to the

Function of mask (Fmask) algorithm (Zhu &Woodcock, 2012). Despite
the reported better results in thesemultitemporal algorithms, there are
also disadvantages. The biggest disadvantage is that they may cause
problems for applications like change detection because land cover
change will also result in sudden changes to satellite observations.
Most of these multitemporal cloud, cloud shadow, and snow detection
algorithms rely on the assumption that between the time of the refer-
ence image and the observed image there is not any land cover change
and differences in reflectance only result from clouds, cloud shadows,
and snow. This may be true for some sensors with high temporal
frequency such as MODIS or SEVIRI if the reference image is very close
in time with the observed image. For sensors like Landsat, this assump-
tion is often invalid, especially for places where land cover change is
common. There have been several approaches proposed for limiting
the effect of land cover change on multitemporal cloud and cloud
shadow identification. For example, some of the algorithms use the
Band 7/Band 1 ratio (Zhu et al., 2012) or the Band 3/Band 1 relationship
(Hagolle et al., 2010) to distinguish some kinds of frequent changes
(e.g. agriculture) from clouds. Lyapustin et al. (2008) propose to use
an internally derived surface change mask to prevent the possibility of
identifying surface change as clouds. On the other hand, Goodwin
et al. (2013) use a geometry-based approach to distinguish land cover
change from cloud shadows. However, it is difficult to exclude all
kinds of land cover change with these empirically derived spectral
tests or include all possible changes in a surface change mask, particu-
larly given the wide variety of kinds of land cover change. This kind of
commission error — where land cover change is removed from images
as part of the cloud/cloud shadow screening process — is particularly
serious when the ultimate goal of the analysis is to monitor land cover
change. Moreover, as both clouds and snow usually make the visible
bands brighter, it is difficult to separate snow from clouds based on
simple image differencing. Most multitemporal algorithms assume
that there is no snow in the image and the pixels that are brighter
than the reference values are only due to clouds (Goodwin et al.,
2013; Hagolle et al., 2010; Jin et al., 2013; Wang et al., 1999).
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Fig. 1. Study area (Fig. 2 in Zhu & Woodcock, 2014).
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