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Surface albedo is an essential parameter not only for developing climatemodels, but also formost energy balance
studies. While climate models are usually applied at coarse resolution, the energy balance studies, which are
mainly focused on agricultural applications, require a high spatial resolution. In this context Landsat is one of
the most used remote sensing sensors.
The albedo, estimated through the angular integration of the Bidirectional Reflectance Distribution Function
(BRDF), requires an appropriate angular sampling of the surface. However, Landsat sampling characteristics,
with nearly constant observation geometry and low illumination variation, prevent from deriving a surface albe-
do product.
In this paperwe present an algorithm to derive a Landsat surface albedo based on the BRDF parameters estimated
from the MODerate Resolution Imaging Spectroradiometer (MODIS) Climate Modeling Grid (CMG) surface re-
flectance product (M{O,Y}D09) using the VJB method (Vermote, Justice, & Bréon, 2009). We base our method
on Landsat unsupervised classification to disaggregate the BRDF parameters to the Landsat spatial resolution.
We tested the proposed algorithm over five different sites of the US Surface Radiation (SURFRAD) network
and inter-compare our results with Shuai, Masek, Gao, and Schaaf (2011) method, which also provides Landsat
albedo. The results show that with the proposed method we can derive the surface albedo with a Root Mean
Square Error (RMSE) of 0.015 (7%). This result supposes an improvement of 5% in the RMSE compared to
Shuai et al.'s (2011)method (with a RMSE of 0.024, 12%) that is mainly determined by the correction of the neg-
ative bias (lower retrieved albedo than in situ data).

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Surface albedo is a key radiation parameter required for modeling
the earth's energy budget and the land-atmosphere radiative interac-
tions. It is a crucial parameter in determining the magnitude of energy
fluxes in the soil–plant–atmosphere continuum (Bonan, 2008; Chapin,
Randerson, McGuire, Foley, & Field, 2008), affecting surface tempera-
ture, evaporation and transpiration, cloud formation and precipitation,
thus ultimately impacting gross primary productivity (Dickinson,
1983; Lawrence & Slingo, 2004; Ollinger et al., 2008; Sellers et al.,
1997).

Detailed knowledge of land surface fluxes, especially latent and sen-
sible components, is important for monitoring the climate of land sur-
face, for evaluating parameterization schemes in weather and climate
models used to predict fluxes exchanges between the surface and the
lower atmosphere, and for agricultural applications such as irrigation

scheduling (Courault, Seguin, & Olioso, 2005). It has been well recog-
nized that surface albedo is among the main radiative uncertainties in
current climate modeling (GCOS, 2011). An accuracy requirement of
5% is suggested by the Global Climate Observing System (GCOS, 2011)
for albedo characterization at spatial and temporal scales compatible
with climate studies. In fact, a sensitivity analysis estimating the albedo
uncertainties impact on climate modeling showed that absolute albedo
accuracy between ±0.02 and ±0.03, equivalent to an uncertainty
of ±10Wm−2 of the net radiation, results in significant changes in re-
gional climate simulations (Nobre, Sellers, & Shukla, 1991; Sellers et al.,
1995).

Albedo is highly variable in space and time, both as a result of chang-
es in surface properties (e.g. snow deposition or sea-ice growth and
melting, changes in soil moisture and vegetation cover) and as a func-
tion of changes in the illumination conditions (solar angular position,
atmospheric and cloud properties). The increasing spatial resolution of
modern climate models and the high spatial resolution required by
most energy balance studies (b100 m) makes it necessary to examine
spatial features of global surface albedo. The surface albedo is estimated
at in situ level either with albedometers or through several directional
surface reflectance measurements using a goniometric system (Liang,
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Li, &Wang, 2012). Thesemeasurements, though, demand a high logisti-
cal requirement and only few surfaces can be characterized and mea-
sured. In this context, and in order to account a wide range surface
cover types, remote sensing fulfills an important role in accurate re-
trievals of surface albedo. Consequently, there are several albedo prod-
ucts derived from different satellite sensor data, such as the MODerate
Resolution Imaging Spectroradiometer (MODIS, Schaaf et al., 2002),
the Advanced Very High Resolution Radiometer (AVHRR, Csiszar &
Gutman, 1999), the Polarization and Directionality of the Earth Reflec-
tance (POLDER, Maignan, Breon, & Lacaze, 2004) and theMeteosat Sec-
ond Generation (MSG, Carrer, Roujean, & Meurey, 2010). However, in
some cases the estimation of surface albedo from remotely sensed
data is a challenging problem due to the low angular sampling of the
sensor considered. This is the case of Landsat satellite series, which
has the potential to provide medium resolution (30 m) images. As a
consequence, some energy balance studies that need the surface albedo
as input parameter consider the surface reflectance as an equivalent to
the surface albedo, while this approximation just applies to Lambertian
surfaces (Nicodemus, Richmond, Hsia, Ginsberg, & Limperis, 1977).
Recently, Mattar et al. (2014) presented a study about the impact of
this approach concluding that it can lead to significant errors not only
on the fluxes but also on the evapotranspiration product.

Shuai, Masek, Gao, and Schaaf (2011) presented a methodology to
generate a Landsat surface albedo product based on the MODIS Bidirec-
tional Reflectance Distribution Function (BRDF) MDC43 product at
500m (Schaaf et al., 2002). By using an unsupervised Landsat classifica-
tion, they select for each class those MODIS pixels that are homoge-
neous at Landsat resolution. Then, they derive directly the surface
albedo from the spectral Albedo-to-Nadir Reflectance ratios for each
class and estimate the broadband albedo using the narrow to broad-
band equation proposed by Liang (2000). This method presents a Root
Mean Square Error (RMSE) generally less than 0.03, but it is mostly de-
termined by a negative bias (lower retrieved albedo than in situ data).
Román et al. (2013) evaluated this Landsat albedo product by using
field and airborne measurements. Their results also show a negative
bias in the order of 0.03. The authors discussed that the bias could be
consequence of some systematic and random errors on the Landsat al-
bedo processing chain. Among the possible sources they suggested are
the following: errors due to slight overcorrection in the reflectance re-
trieval, small differences in the Relative Spectral Response (RSR) or
the assumption of spatial/temporal uniformity at the Landsat (30 m)
pixel scale.

The objective of this paper is to present a method that improves
upon the Shuai et al. (2011) albedo product, hereafter referred as the
standard Landsat albedo. The algorithmpresented is based on the disag-
gregation of the BRDFparameters fromMODIS to Landsat spatial resolu-
tion by matrix inversion and exploiting the information from all the
pixels along the scene. The inputs of the method are the unsupervised
Landsat classification and the MODIS Climate Modelling Grid (CMG)
BRDF. Thus, themethod proposed has threemain differences compared
to the original Landsat albedo. First, we avoid the selection of homoge-
neous MODIS pixels at Landsat spatial resolution, which is based on a
threshold to define the purest pixels and assumes the spatial uniformity
at Landsat pixel scale. Román et al. (2013) pointed out that this assump-
tion could be a possible source of errors by including heterogeneous
patterns of the surface into the same class at Landsat scale. Second, we
derive the BRDF from MODIS CMG surface reflectance instead of
working on 500m spatial resolution.Workingwith a coarser resolution
compared to higher resolution may introduce some errors in the disag-
gregation of CMG pixels since it decreases the amount of MODIS pixels
through each Landsat scene and, therefore, the information available
for the matrix inversion. However, the 500 m surface reflectance prod-
uct presents a shift in its grid that increases with the view zenith angle
and results in a weak relation between the location of the grid cells and
their observations (Tan et al., 2006). Consequently, this may introduce
some noise in the BRDF inversion, which requires several observation

geometries. Thus, working with aggregated MODIS data (such as
the CMG product) can minimize this effect (Tan et al., 2006). Of
course, CMG resolution may be coarse and this error can also be min-
imized with a better spatial resolution by using the 1 km aggregated
product.

Third, the last difference with Shuai et al. (2011) method is that we
use a different BRDF inversion algorithm instead of the official MDC43
product. The method used in this paper was presented by Vermote,
Justice, and Bréon (2009) (hereafter referred asVJBmethod). Compared
to the official product, it permits more accurate tracking of vegetation
phenology and retains the highest temporal resolution (daily, cloud
cover permitting) without the noise generated by the day-to-day
changes in observation geometry. Bréon andVermote (2012) compared
this method with the MCD43 MODIS product for the correction of the
surface reflectance time series. Their results showed that the perfor-
mances of the two approaches are very similar, demonstrating that a
simple four-parameter NDVI-scaled model performs as well as a more
complex model with many more degrees of freedom. Abelleyra and
Verón (2014) supported recently these conclusions at higher spatial
resolution by comparing (at 250m spatial resolution) the surface reflec-
tance corrected for the BRDF using the VJB method to the BRDF correc-
tion using the MCD43 product. Additionally, the VJB method has been
also applied satisfactorily to estimate BRDF-adjusted surface reflectance
(Claverie et al., 2013).

2. Methodology

2.1. BRDF model

Following Vermote et al. (2009) notation the surface reflectance (ρ)
is written as:

ρ θs; θv;ϕð Þ ¼ k0 1þ k1
k0

F1 θs; θv;ϕð Þ þ k2
k0

F2 θs; θv;ϕð Þ
� �

ð1Þ

where θs is the sun zenith angle, θv is the view zenith angle, ϕ is the rel-
ative azimuth angle, F1 is the volume scattering kernel, based on the
Rossthick function derived by Roujean, Leroy, and Deschamps (1992)
and F2 is the geometric kernel, based on the Li-sparse model (Li &
Strahler, 1986) but considering the reciprocal form given by Lucht
(1998). Although these are the models used in the MCD43 product, in
order to derive the BRDF with the VJB method, we consider the same
models but corrected for the Hot-Spot process proposed by Maignan
et al. (2004). F1 and F2 are fixed functions of the observation geometry,
but k0, k1, and k2 are free parameters. Following this notation, we use V
as k1/k0 and R for k2/k0.

For view-illumination geometries typical of medium-resolution sen-
sors such as MODIS, in order to obtain enough bidirectional observa-
tions to retrieve the BRDF free parameters, a period of sequential
measurement is usually needed to accumulate sufficient observations.
During this temporal window the model parameters are assumed to
be constant. Thismethod is currently used to derive theMCD43product,
which combines registered, multidate, multiband, atmospherically
corrected surface reflectance data from Terra and Aqua data to fit a
BRDF in seven spectral bands over a composite period of 16 days
when the target is supposed to be stable. This product is produced
every eight days, although it is based on the data acquired during the
16 day composite period after the date specified.

2.2. VJB method

Looking for an improvement in the albedo temporal resolution that
mitigated the assumption of a stable target, Vermote et al. (2009) pre-
sented the VJB method that assumes that the BRDF shape variations
throughout a year are limited and linked to the Normalized Difference
Vegetation Index (NDVI). This method accounts for the fact that the
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