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Air temperature is an essential component in microclimate and environmental health research, but difficult to
map inurbanenvironments because of strong temperature gradients.We introduce a spatial regression approach
to map the peak daytime air temperature relative to a reference station on typical hot summer days using
Vancouver, Canada as a case study. Three regression models, ordinary least squares regression, support vector
machine, and random forest, were all calibrated using Landsat TM/ETM+ data and field observations from
two sources: Environment Canada and the Weather Underground. Results based on cross-validation indicate
that the random forest model produced the lowest prediction errors (RMSE = 2.31 °C). Some weather stations
were consistently cooler/hotter than the reference station and were predicted well, while other stations, partic-
ularly those close to the ocean, showed greater temperature variability andwere predictedwith greater errors. A
few stations, most of which were from the Weather Underground data set, were very poorly predicted and pos-
sibly unrepresentative of air temperature in the area. The random forest model generally produced a sensible
map of temperature distribution in the area. The spatial regression approach appears useful for mapping intra-
urban air temperature variability and can easily be applied to other cities.

© 2014 Elsevier Inc. All rights reserved.

1 . Introduction

Near-surface air temperature, defined as the temperature 2 m
above the land surface, is a key variable in studies of meteorology,
climate, and environmental health (Garske, Ferguson, & Ghani, 2013;
Harvell et al., 2002; Katsouyanni et al., 1993; Koken et al., 2003; Kuhn,
Campbell-Lendrum, &Davies, 2002;Maria & Renganathan, 2008;Nichol,
Fung, Lam, & Wong, 2009; Oke & Maxwell, 1975; Saaroni & Baruch,
2010). Previous studies have widely used air temperature to estimate
the intensity of urban heat islands (Kolokotroni & Giridharan, 2008;
Unger, Sümeghya, & Zobokib, 2001), to study the relationship air tem-
perature and air pollution (Koken et al., 2003), and to predict risks of
heat-related mortality (Laaidi et al., 2012). Air temperature is tradition-
ally monitored by stationary meteorological instruments (weather sta-
tions), which provide point data with high temporal frequency,
typically recorded on an hourly basis. However, such observations are
often unable to adequately describe spatial heterogeneity over small
geographic extents (Benali, Carvalho, Nunes, Carvalhais, & Santos,
2012). This is particularly important in thermally complex environ-
ments such as urban settings, where local microclimatic variability is
influenced by factors such as land cover (Saaroni & Baruch, 2010), expo-
sure to wind and sun, soil and vegetation moisture, and the thermal

properties of upwind areas (Oke & Maxwell, 1975). Spatial patterns in
these variables exist at very fine scales (101–102 m) compared with
the sampling density typically provided by weather station networks
(104–105 m), suggesting that spatial interpolation between station ob-
servations is not an optimal solution for mapping air temperature in
the urban environment (Vogt, Viau, & Paquet, 1997). Remote sensing
provides an additional source of data that can provide high-resolution
spatially explicit information on many of the factors that influence air
temperature and thus assist with mapping it in spatially heterogeneous
environments. Three principal approaches have been used to map air
temperature from remote sensing data: 1) the Temperature–Vegetation
Index (TVX), 2) energy balance models, and 3) statistical analyses
(Benali et al., 2012; Zakšek & Schroedter-Homscheidt, 2009).

The TVXmethod is basedon the hypothesis thatwhile an unvegetated
surface can be substantially warmer than the surrounding air, the sur-
face temperature of an infinitely thick vegetation canopy will approxi-
mate the air temperature because the canopy consists primarily of air,
with branches and leaves volumetrically a minor component. On that
basis, Prihodko and Goward (1997) used the observed negative correla-
tion between the Normalized Difference Vegetation Index (NDVI) and
Land Surface Temperature (LST), as well as an estimate of the NDVI
value for an infinitely thick canopy, to estimate air temperature. To em-
ploy the TVX method, a sample window with varying vegetation cover
is needed for the establishment of local NDVI–LST correlations. In addi-
tion to requiring local variations in vegetation cover, the use of a sample
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window effectively reduces the spatial resolution of the predicted air
temperatures and makes the TVXmethod best suited for large regions
with gradual temperature changes (e.g. Sandholt, Rasmussen, &
Andersen, 2002; Stisen, Sandholt, Norgaard, Fensholt, & Eklundh,
2007; Vancutsem, Ceccato, Dinku, & Connor, 2010; Zhu, Lu, & Jia,
2013) but unsuitable for urban areas.

The energy balance approach considers air temperature to be
controlled by Earth system energy dynamics, including the radiation
balance as well as soil, sensible, and latent heat fluxes (Meteotest,
2010; Oke, 1988; Sun et al., 2005). It is thus directly grounded in ther-
modynamics, but it relies on comprehensive parameterization for
which spatially distributed data are rarely available, specifically at the
resolution necessary for application to urban studies (Mostovoy, King,
Reddy, Kakani, & Filippova, 2006).

Statistical analyses are mostly based on empirical regressionmodel-
ing, which can take the form of linear (Nichol et al., 2009) ormore com-
plex statistical models like neural networks, genetic algorithms and
regression trees (Emamifar, Rahimikhoob, & Noroozi, 2013; Jang, Viau,
&Anctil, 2004; Singh, Joshi, & Kishtawal, 2006). Predictors of air temper-
ature can be limited to land surface temperature (LST) (Mostovoy et al.,
2006), or also include one or more additional environmental variables
(Benali et al., 2012) such as NDVI, elevation, and land cover. Regression
models can be suitable for areaswith complex landscape characteristics,
such as urban areas, although applicationwill generally be limited to the
environment for which they were developed.

Remote sensing-based air temperature mapping has typically
focused on relatively large (N100,000 km2) and homogeneous geo-
graphic regions (Benali et al., 2012; Mostovoy et al., 2006; Stisen et al.,
2007; Vogt et al., 1997; Xu, Qin, & Shen, 2012). Few existing studies
have attempted to map air temperature distributions at the city scale;
the only notable example is provided by Nichol and To (2012) studying
the distribution of air temperature in Kowloon, Hong Kong. The devel-
opment and validation of approaches optimized tomap air temperature
distributions in urban environments is of particular importance in the
context of extreme heat events and their impacts on human health,
which are expected to increase in severity in the future. Specifically,
development of a method to map peak daytime air temperature
(Tmax) is of importance because this variable is commonly used to
quantify the relationship between extreme heat and mortality (Kunst,
Looman, & Mackenback, 1993; Medina-Ramon, Zanobetti, Cavanagh, &
Schwartz, 2006), and recent studies indicate that maps of temperature
during extreme heat events can help explain the spatial pattern of
heat-related risk (Anderson & Bell, 2011; Buscail, Upegui, & Viel,
2012; Hondula et al., 2012; Laaidi et al., 2012; Tomlinson,
Chapman, Thornes, & Baker, 2011). However, to be useful for heat
emergency planning purposes, Tmax maps must be valid for typical
(as opposed to specific) hot summer days, which precludes mapping
of absolute temperature values that vary depending on the severity
of the heat wave.

In this study, we assess the ability of three remote sensing-based
regression models to map Tmax for the Greater Vancouver region of
British Columbia, Canada, using Landsat data and point observations
from weather stations in the area. The methods are ordinary least
squares regression, support vector machine, and random forest. We
quantify Tmax relative to Vancouver International Airport (YVR), as
forecasted and observed temperatures at this weather station form
the basis for heat health emergency definitions for the area.

2 . Study Area

Our study area is Greater Vancouver, British Columbia, Canada
(Fig. 1), a coastal metropolitan area with N2 million people (Statistics
Canada, 2007). Greater Vancouver is bordered to the north by fold
mountain ridges, to the west by the Pacific Ocean, and to the east by
the semi-arid Fraser Valley, a geographic context that generates a com-
plex microclimate in the area (Oke, 1976; Oke & Hay, 1994; Runnalls &

Oke, 2000). During the summer, ocean breezes and winds from the
mountain ridges can cool down the coastal regions, while the Fraser
Valley can trap air masses and create a relatively hot zone (Oke & Hay,
1994). Temperature in the urban area is heavily influenced by cloud
cover in the summer period, while evaporative cooling is of little influ-
ence due to limited vegetation cover. On a hot summer day Greater
Vancouver is typically cloudless with lightwinds from the Fraser Valley,
a weather situation that can generate a strong urban heat island effect
and substantially higher temperatures in the urban areas compared
with their surroundings (Oke & Hay, 1994).

3 . Data and methods

3.1 . Satellite data

The satellite data used in this study consist of all (n = 6) cloud-free
Landsat 5 TM and Landsat 7 ETM+ images available from 2001 to 2010
for hot summer days in the study area, here defined as days with
Tmax N 25 °C at YVR (Table 1). 25 m Canadian Digital Elevation Data
(CDED, http://www.geobase.ca) were used to provide elevation infor-
mation for the study area. Landsat 5 TM images and the DEM were
resampled to 60m tomatch the spatial resolution of the ETM+ thermal
band, and all data were projected to UTM zone 10 N.

3.2 . Satellite-derived predictors

Several spatial data layers were derived from the Landsat and eleva-
tion data for use as predictors in regression models to map Tmax: LST,
Normalized Difference Water Index (NDWI), elevation, skyview factor
(SVF), and solar radiation. All layers except elevation were derived
separately for each Landsat image.

LSTwas estimated from Landsat band 6. Top of atmosphere radiance
values were atmospherically corrected using NASA's Atmospheric Cor-
rection Parameter Calculator to obtain at-surface radiance (Barsi,
Barker, & Schott, 2003), and kinetic surface temperature was then
derived by inversion of Planck's Law, applying emissivity values from
the North American ASTER Land Surface Emissivity Database (Hulley
& Hook, 2009).

LST ¼ K2= ln εK1Lλ þ 1ð Þ

where K1 and K2 are the coefficients, ε is the emissivity and Lλ is the
radiance.

NDWI is an index designed to quantify vegetation water content
(Gao, 1996), which strongly influences surface cooling through evapo-
transpiration. NDWI is defined as:

NDWI ¼ ρNIR−ρMIRð Þ= ρNIR þ ρMIRð Þ

In this study, Landsat bands 4 and 5were used to calculate NDWI for
land areas. NDWI values are notmeaningful overwater and, as both ρNIR
and ρMIR are very small over water, tend to be noisy. To allow the NDWI
layer to function as a proxy for cooling by evapotranspiration, we found
the maximum NDWI value on land and applied it to all water surfaces,
replacing the results from the original NDWI calculation for water.

SVF can be defined as the portion of unobscured sky,which is related
to the radiation received or emitted in an area (Chen et al., 2012; Su,
Brauer, & Buzzelli, 2008) and is influenced by both topography and
building structure. SVF was mapped for each pixel using an empirically
calibrated relationship with shadow proportion, which was derived
usingpartial spectral unmixing. Full details of themethod used to derive
the SVF data layer will be forthcoming in a separate paper; validation
using independent lidar data for Vancouver shows the method to per-
form well (SVF root mean square error = 0.056).
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