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This study proposed modifying the conceptual approach that is commonly used to model development of stand
attribute estimates using airborne LiDARdata. Newmodelswere developed using an area-based approach to pre-
dict wood volume, stem volume, aboveground biomass, and basal-area across a wide range of canopy structures,
sites and LiDAR characteristics. This newmodeling approach does not adopt standard approaches of stepwise re-
gression using a series of height metrics derived from airborne LiDAR. Rather, it used four metrics describing
complementary 3D structural aspects of the stand canopy. The first three metrics were related to mean canopy
height, height heterogeneity, and horizontal canopy distribution. A fourthmetricwas calculated as the coefficient
of variation of the leaf area density profile. This fourthmetric provided information on understory vegetation. The
models that were developedwith the four structural metrics provided higher estimation accuracy on stand attri-
butes thanmodels using heightmetrics alone, while also avoiding data over-fitting. Overall, themodels provided
prediction error levels ranging from 12.4% to 24.2%, depending upon forest type and stand attribute. The more
homogeneous coniferous stand provided the highest estimation accuracy. Estimation errors were significantly
reduced in mixed forest when separate models were developed for individual stand types (coniferous, mixed
and deciduous stands) instead of a general model for all stand types. Model robustness was also evaluated in
leaf-off and leaf-on conditions where both conditions provided similar estimation errors.

© 2014 Elsevier Inc. All rights reserved.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
2. Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

2.1. Study sites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
2.2. Field plot data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
2.3. LiDAR data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

3. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
3.1. Selection of LiDAR metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
3.2. Establishment of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
3.3. Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
3.4. Analysis of the generalization capacity of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
4.1. Validation of model shape through the global evaluation of model generalization level . . . . . . . . . . . . . . . . . . . . . . . . . 328
4.2. Impact of stand complexity on model quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
4.3. Effects of leaf-on versus leaf-off conditions on model quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

Remote Sensing of Environment 156 (2015) 322–334

⁎ Corresponding author. Tel.: +33 4 67 54 87 19; fax: +33 4 67 54 87 00.
E-mail address: marc.bouvier@teledetection.fr (M. Bouvier).

http://dx.doi.org/10.1016/j.rse.2014.10.004
0034-4257/© 2014 Elsevier Inc. All rights reserved.

Contents lists available at ScienceDirect

Remote Sensing of Environment

j ourna l homepage: www.e lsev ie r .com/ locate / rse

http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2014.10.004&domain=pdf
http://dx.doi.org/10.1016/j.rse.2014.10.004
mailto:marc.bouvier@teledetection.fr
Unlabelled image
http://dx.doi.org/10.1016/j.rse.2014.10.004
Unlabelled image
http://www.sciencedirect.com/science/journal/00344257
www.elsevier.com/locate/rse


1. Introduction

Total aboveground woody volume (hereafter referred to as wood
volume) and the stem merchantable volume of a tree (hereafter re-
ferred to as stemvolume) are key forest inventory attributes that are re-
quired by forestmanagers. Reliable mapping of both volumes facilitates
the implementation of sustainable management strategies and prac-
tices. These practices enable logging be optimized while contributing
to forest ecosystem preservation and climate change mitigation
(Picard, Saint-André, & Henry, 2012). Biomass of forest stands, includ-
ing both aboveground and belowground components, is another attri-
bute that is required to improve our knowledge of the carbon cycle.
Wood volume, stem volume and aboveground biomass (AGB) are inter-
dependent, and there are strong correlations among these three
attributes (Brown & Lugo, 1984; Fang, Liu, & Xu, 1996). Most forest in-
ventory programs estimate wood and stem volumes from field mea-
surements of stem diameter from sampled trees. Tree heights are also
measured, but generally only from a subset of individuals, as height
measurements are more difficult and costly to collect than those for
stemdiameter (Avery & Burkhart, 2001; Kangas &Maltamo, 2006). For-
est inventories generally use random or systematic sampling schemes
(Scott & Gove, 2002). In both approaches, a limited number of plots
are inventoried because this work is both costly and time-consuming.
Furthermore, field measurements can only be performed in areas that
are accessible to field crews. Remote sensing has the potential to pro-
vide quick and accurate measurements of stand attributes over large
areas at a much lower cost than with traditional inventory practices.
Using remote sensing data, coupled with a small number of field
measurements, can thus be an effective solution for overcoming the
aforementioned drawbacks of field measurements, while providing ac-
curate and timely information on several key forest attributes.

Optical and radar remote sensing have been widely used to map
forest structural attributes and biophysical parameters (Franklin,
2001; Le Toan, Beaudoin, Riom, & Guyon, 1992; Leboeuf, Fournier,
Luther, Beaudoin, & Guindon, 2012). Assessment of wood volume
and ABG remains challenging, especially for forests with high AGB
levels (Cohen & Spies, 1992; Leboeuf et al., 2012). In a recent study,
Zolkos, Goetz, and Dubayah (2013) analyzed a large set of published
studies on AGB assessment from remote sensing data. The authors
have brought to light the considerable variability in the accuracy of
AGB predictions according to both forest environment and remote
sensing data used.

LiDAR has emerged as one of the very promising technologies for
forest applications and its potential for forest attribute estimation at
several scales is widely acknowledged (Leeuwen & Nieuwenhuis,
2010; Næsset, 2004; Nelson, Krabill, & Tonelli, 1988). These active
systems provide precise distance measurements that are based on
elapsed time between the emission of a laser pulse and the measure-
ment of the return signal. The spatial position of all the recorded
returns upon the Earth's surface is calculated from both the position
and orientation of the LiDAR system. These are measured using a dif-
ferential global positioning system (DGPS) and an accurate inertial
unit. The resulting point cloud is processed to assess diverse LiDAR
metrics. LiDAR systems have either a small footprint (0.1–0.3 m) or
a large footprint (8–70 m) (Lim, Treitz, Wulder, St-Onge, & Flood,
2003). Both of these systems have been used to estimate forest in-
ventory attributes (Lefsky, Cohen, et al., 1999; Lefsky et al., 2002;
Means et al., 2000; Næsset, 2002). Airborne Laser Scanner (ALS) is
a LiDAR system combined with a scanning system. ALS is thus able
to record data over a swath, the width of which depends upon both
the scanning angle and flight altitude. These systems can be used to
provide wall-to-wall coverage of areas of interest (Wulder et al.,
2012). Two approaches can be applied using small-footprint discrete
return ALS: (1) a tree-based approach (Li, Guo, Jakubowski, & Kelly,
2012; Maltamo, Eerikäinen, Pitkänen, Hyyppä, & Vehmas, 2004;
Popescu, Wynne, & Nelson, 2003; Véga et al., 2014); or (2) an area-

based approach (ABA) (Means et al., 2000; Næsset, 1997, 2002;
Nelson et al., 1988). Current ALS that offer high sampling rates can be
used to estimate single-tree attributes in a tree-based approach. How-
ever, individual tree segmentation algorithms frequently can be difficult
to implement because they generate omission and inclusion errors
when individualizing trees (Falkowski et al., 2006; Goerndt, Monleon,
& Temesgen, 2010; Véga & Durrieu, 2011). Overlapping tree crowns
can add confusion when identifying individual trees (Gleason & Im,
2011). Therefore, detection performance regarding individual trees is
reduced in complex stands. ABAs are commonly used to generate
maps of forest attributes in diverse forest biomes, temperate forests
(Hall, Burke, Box, Kaufmann, & Stoker, 2005; Zhao& Popescu, 2009), bo-
real forests (Lim, Treitz, Baldwin, Morrison, & Green, 2003; Næsset &
Gobakken, 2008), tropical forests (Asner, 2009; Kronseder, Ballhorn,
Böhm, & Siegert, 2012), and savannah woodlands (Lucas et al., 2006).
In such approaches, stand attribute estimations are computed from
the statistical relationships between plot-level LiDAR metrics that
are commonly extracted from point cloud data and stand attributes,
which are derived from field plots. In general, numerous candidate
metrics are derived from point height distributions at the plot-
level, e.g., maximum and mean height values, percentiles of the dis-
tributions, and canopy densities (Næsset, 2002). Metrics that pro-
vide the greatest explanation are then selected, with only a few
remaining in the final model (Hall et al., 2005; Lim & Treitz, 2004;
Lim, Treitz, Wulder, et al., 2003; Patenaude et al., 2004). ABAs have
been used to develop models for specific forested areas and for spe-
cific species or a specific group of species, which has led to a huge
number of different models using diverse LiDAR metrics.

Currently, ABAs that are used to predict stand attributes have two
major drawbacks, despite their proven usefulness for forest inventory
and mapping (Næsset, 2002). The first drawback stems from the fact
that candidate metrics generated from LiDAR data are known to be
strongly inter-correlated (Chen, 2013). Furthermore, too many candi-
date metrics are generated, which complicates metric selection and
the development of robust models (Hall et al., 2005; Khan, Van Aelst,
& Zamar, 2007;Magnussen,Næsset, Gobakken, & Frazer, 2012). The sec-
ond drawback is that metrics used to describe stand structure are gen-
erally derived from the vertical distribution of LiDAR returns. Indeed,
these metrics do not sufficiently take into account several other canopy
characteristics, including horizontal canopy heterogeneity. Toovercome
these drawbacks, new metrics have been identified to enhance the de-
scription of tree spatial distributions and, consequently, stand attribute
predictions. For instance, canopy volume and canopy cover metrics
have proved to be useful for AGB and volume estimation, in addition
to height metrics (Chen, Gong, Baldocchi, & Tian, 2007; Hall et al.,
2005; Kim et al., 2009; Næsset & Gobakken, 2008). These metrics take
into account horizontal vegetation structures within model predictions.
Other metrics have been estimated from the vegetation density profile.
Profileswere integrated to estimate the distribution and total amount of
foliage. These metrics have proved to be valuable for stand and tree at-
tribute estimation (Allouis, Durrieu, Véga, & Couteron, 2013; Lefsky,
Harding, Cohen, Parker, & Shugart, 1999). In such approaches, newmet-
rics are generally identified, which are deemed to be unbiased and con-
sistently meaningful (Magnussen & Boudewyn, 1998). The use of
meaningful metrics that describe the 3D structural aspects of the
stand canopy could help overcome the current limitations of ABA.

Model generalization is a key question that must be addressed to
predict stand structural attributes (Chen, 2010). Few studies have
assessed the potential of some LiDAR metrics for the prediction of di-
verse stand attributes or across diverse forest area types. Lefsky,
Harding, et al. (1999) found that the quadratic mean canopy height
(QMCH) improved estimates of AGB and basal area (BA). Lim, Treitz,
Baldwin, et al. (2003) used mean laser height that was computed
from filtered LiDAR returns, based upon the intensity return values, to
estimate wood volume, AGB and BA. Magnussen et al. (2012) proposed
a conceptual model for predicting tree-size-related forest attributes
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