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The total absorption (a(λ)) and backscattering (bb(λ)) coefficients of naturalwaters are themost significant factors
affecting light propagation within water columns, and thus play indispensable roles in the estimation of aquatic
biomass, primary production, and carbon pools. Despite its importance, no accurate retrieval model has been spe-
cifically developed for both oceanic and coastal waters, but significant efforts have beenmade in regard to oceanic
inversion models. The objectives of the present study are to evaluate the applicability of the quasi-analytical algo-
rithm (QAA) in deriving a(λ) and bb(λ) from oceanic and coastal waters, and to improve it using a neural network-
based semi-analytical algorithm (NNSAA). Based on a comparison of the a(λ) and bb(λ) predicted by thesemodels
with field measurements taken from the national aeronautics and space administration bio-optical marine algo-
rithm dataset (NOMAD), the Yellow Sea and China East Sea, it is shown that the NNSAA model (R2 N 0.82 and
mean relative error, MRE = 20.6–35.5%) provides a stronger performance than the QAA model (R2 b 0.73 and
MRE = 32.2–69.6%). The model was also applied to MODIS data after atmospheric correction using a near-
infrared-based and shortwave infrared-based combined model. Through validation by field measurements, it
was shown that the NNSAA model can predict a(λ) and bb(λ) with high accuracy (R2 N 0.77 and MRE b 39.9%).
Finally, the NNSAA model was used to map the global climatological seasonal mean a(443) and bb(555) for the
time range of July 2002 to September 2013. Except the coastal zones, it was shown that the a(443) and bb(532)
in some high-latitude areas are much higher than in the mid- and low-latitude regions, due to the effects of
spurious signals fromneighboring sea-ice. In the equatorial oceans, the a(443) value in the surfacewater is consid-
erably higher in the equatorial Pacific than in the equatorial Atlantic in the upwelling region, while the integrate
a(443) ismuch higher in the Atlantic than in the throughout the entire tropical gyre areas. The difference between
a(443) and bb(532) in the subsurface water is due to a pronounced deep biomass maximum existing in the
equatorial Atlantic, which is associated with the higher nitrate in the lower euphotic zone.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Absorption and backscattering coefficients are inherent optical prop-
erties (IOPs, see Table 1 for definitions of all symbols and acronyms used
in thiswork). It has long been known that the visible radiation upwelling
from a natural water body is partially dictated by the absorption and
backscattering coefficients of the optically active constituents residing
within that water body (Robert, Alexander, & Kirill, 1995), thus the
total absorption and backscattering coefficients can be directly associat-
ed with a proper bio-optical treatment of the light regime of the ocean
mixed layer and the related heat budget (Ohlmannn, Siegel, & Mobley,
2000). In general, an accurate estimation of the scattering and

attenuation characteristics of the upper layer ocean may provide insight
into the nature of the particles in suspension (Volpe, Silvestri, & Marani,
2011).Moreover, the total absorption and backscattering coefficients de-
fine the upwelling light field, and are also themost logical targets for the
retrieval of the water-leaving reflectance spectrum determined from
satellite observations (Mélin et al. 2005). At present, optical data, such
as total absorption and backscattering coefficients, have been widely
used for coastal and oceanic studies (Astoreca, Doxaran, Ruddick,
Rousseau, & Lancelot, 2012; Garver & Siegel, 1997; IOCCG 2006), such
as the optical classification of water bodies (Moore, Campbell, &
Dowell, 2009).

Methods to accurately retrieve absorption and backscattering coeffi-
cients in oceanic waters have been under investigation for several
decades, and models ranging from empirical to analytical have been
proposed (Chen, Yao, & Quan, 2013; IOCCG 2006; Lee, Carder, & Arnone,
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2002; Lee, Werdell, & Arnone, 2009; Smyth, Moore, Hirata, & Aiken,
2006). Empirical models apply simple ormultiple regressions to the de-
sired optical property and the ratios of irradiance reflectance or remote
sensing reflectance (Li et al., 2013). Such approaches do not require a
full understanding of the relationship between the remote sensing re-
flectance and absorption and/or backscattering coefficients (Lee &
Carder, 2004). Due to the statistical nature of regression, however, the
accuracy of these models decreases when the bio-optical characteristics
differentiate from the datasets used to empirically derive the covariance
relationships, unless thewaters are restricted to oceanicwaters (Carder,
Chen, Lee, Hawes, & Cannizzaro, 2003). The analytical model uses the
radiative transfer theory to simulate the spectra at the top-of-
atmosphere with different IOPs by satellite detector and atmosphere
conditions (Gordon & Clark, 1981; Gordon et al., 1988). Using the
water-leaving signals (e.g. remote sensing reflectance) detected by
satellite, the IOPs can be accurately determined by a physical model
(Mobley, 1994). However, this model requires the accurate profile in-
formation of the IOPs of the water and atmosphere for model initializa-
tion, which is not always available for the general application of remote
sensing. The semi-analyticalmodel is based on the relationship between
the IOPs and AOPs, combined with several empirical relationships. This
modelworkswell for differentwater bodies andusually performsbetter
than the empirical model (Chen, Zhang, Cui, & Wen, 2013; Li et al.,
2013), thus it is a promising technique for IOP retrievals.

Despite the fact that there are several empirical and semi-analytical
models available for computing IOPs (Chen, Yao, et al., 2013; Dupouy
et al., 2010; Garver & Siegel, 1997; Hoge & Lyon, 2005; IOCCG 2006;
Lee et al., 2009; Li et al., 2013; Mélin et al. 2005; Smyth et al., 2006;
Tzortziou et al., 2007), at present there is a compelling need for an
IOPs model for turbid coastal waters, as the existing models are essen-
tially applicable only for clear oceanic waters or regional coastal zones.
For example, the widely used QAA (Lee et al., 2009) models were
originally developed for oceanic water, and thus may not be suitable
for optically complex coastal waters due to the high concentrations of

suspended sediment and CDOM (Chen, Cui, Tang & Song, 2014; D'Sa,
MIller, & McKee, 2007; Li et al., 2013; Shanmugam, 2011). Such
complexity is primarily manifested in the variation of the factors such
as g1 and g2 which were proposed by Gordon et al. (1988) and lately
modified by Lee et al. (2009) to describe the relationship between
remote sensing reflectance and IOPs (Gordon et al. (1988) found that
g1 ≈ 0.0949 and g2 ≈ 0.0794 for oceanic waters, while Lee et al.
(2009) suggested that g1 ≈ 0.089 and g2 ≈ 0.125 are more suitable
for higher scattering coastal waters). In fact, the relationship between
remote sensing reflectance and IOPs may be very complicated, and is
only vaguely understood. As a result, using constant g1 and g2 for differ-
ent water types may be not appropriate (Aurin & Dierssen, 2012). In
addition, in the QAA model the total absorption coefficient and back-
scattering at 555 nm are estimated by empirical models, and then
extrapolated to the “unknown” shorter wave bands using a semi-
analytical model. It is well known that empirical models are generally
only suitable for application to waters with optical characteristics simi-
lar for application to waters with optical characteristics similar to those
used in the development of the model. These reasons motivate us to
build a more accurately model for deriving IOPs from remote sensing
reflectance for both oceanic and coastal waters.

The performance of QAA model in the optical complex coastal wa-
ters may be improved by several recently developed semi-analytical
and empirical models (Chen, Cui, Qiu & Lin, 2014; Garver & Siegel,
1997; IOCCG 2006; Li et al., 2013; Smyth et al., 2006). These models
can be used to process satellite data efficiently, but some problems are
encountered when they are applied to optically complex coastal waters
such as the Yellow Sea and China East Seas. For example, when the IOP
retrieval model developed by Garver and Siegel (1997) and Hoge and
Lyon (2005) was used to process satellite data in the Yellow Sea and
China East Seas, somenegative backscattering values could be observed.
Even though the model proposed by Li et al. (2013) may work better
than QAA model in optically complex waters, due to the fact that this
model is capable of accommodating the variation of g1 and g2 across

Table 1
All symbols and definitions used in this work.

Symbol Description Unit

CDOM Colored dissolved organic matter
QAA Quasi-analytical algorithm
SAA Semi-analytical algorithm
MSAA MODIS semi-analytical algorithm
IOP Inherent optical property
AOP Apparent optical property
NNSAA neural network-based semi-analytical algorithm
NNS Neural network model for S(λ) retrieval
NNB Neural network model for bb(λ) retrieval
NNA Neural network model for a(λ) retrieval
NOMAD NASA bio-optical marine algorithm dataset
STDEV Standard deviation
NIR Near-infrared
SWIR Shortwave-infrared
ARE Absolute relative error %
MRE Mean absolute relative error %
Rrs(λ) Remote sensing reflectance sr−1

Rrg Band ratio of Rrs(667) to Rrs(488)
a(λ) Total absorption coefficient m−1

ag(λ) Absorption coefficient for gelbstoff concentration m−1

aφ(λ) Absorption coefficient for phytoplankton pigment m−1

aw(λ) Absorption coefficient for water molecular m−1

bb(λ) Total backscattering coefficient m−1

bbp(λ) Backscattering coefficient for suspended particles m−1

bbw(λ) Backscattering coefficient for pure waters m−1

S(λ) Ratio of bb(λ) to a(λ)
λ Wavelength nm
gi Empirical coefficient (i = 0, 1, 2, or 3)
ξ ag(λ3)/ag(λ2) − ζag(λ1)/ag(λ2)
ζ aφ(λ1)/aφ(λ3) + ξaφ(λ2)/aφ(λ3)
εbb(λ1,λi) bb(λi)/bb(λ1) (i = 2 or 3)
Y Power value for spectral slope of backscatter of suspended particles
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