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This study investigated how lidar-derived vegetation indices, disturbance history from Landsat time series (LTS)
imagery, plot location accuracy, and plot size influenced accuracy of statistical spatial models (nearest-neighbor
imputation maps) of forest vegetation composition and structure. Nearest-neighbor (NN) imputation maps were
developed for 539,000 ha in the central Oregon Cascades, USA. Mapped explanatory data included tasseled-cap
indices and disturbance history metrics (year, magnitude, and duration of disturbance) from LTS imagery, lidar-
Keywords: derived vegetation metrics, climate, topography, and soil parent material. Vegetation data from USDA Forest
Lidar Service forest inventory plots was summarized at two plot sizes (plot and subplot) and geographically located
with two levels of accuracy (standard and improved). Maps of vegetation composition and structure were
developed with the Gradient Nearest Neighbor (GNN) method of NN imputation using different combinations
of explanatory variables, plot spatial resolution, and plot positional accuracy. Lidar vegetation indices greatly
improved predictions of live tree structure, moderately improved predictions of snag density and down wood
volume, but did not consistently improve species predictions. LTS disturbance metrics improved predictions of
forest structure, but not to the degree of lidar indices, while also improving predictions of many species. Absence
of disturbance attribution (i.e. disturbance type such as fire or timber harvest) in LTS disturbance metrics may
have limited our ability to predict forest structure. Absence of corrected lidar intensity values may also have
lowered accuracy of snag and species predictions. However, LTS disturbance attribution and lidar corrected
intensity values may not be able to overcome fundamental limitations of remote sensing for predicting snags
and down wood that are obscured by the forest canopy. Improved GPS plot locations had little influence on
map accuracy, and we suggest under what conditions improved GPS plot locations may or may not improve
the accuracy of predictive maps that link remote sensing with forest inventory plots. Subplot NN imputation
maps had much lower accuracy compared to maps generated using response variables from larger whole
plots. No single map had optimal results for every mapped variable, suggesting map users and developers
need to prioritize what forest vegetation attributes are most important for any given map application.
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1. Introduction reduction, and wildfire risk assessment often involve multiple
interacting objectives, values, and threats (e.g. climate change, wildfires,
and insect outbreaks) spanning broad spatial scales and long ecological

gradients. In this complex policy and decision-making environment,

Forest management and conservation have grown increasingly com-
plex, involving consideration of a wide array of ecological, economic,

and societal values. Issues such as old growth conservation, wildlife
habitat management, timber extraction, forest restoration, fuel
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quantitative information is required about forest vegetation conditions
over large landscapes that is highly detailed with respect to multiple
vegetation attributes, and spatially complete (i.e. mapped) (Spies
et al., 2007).

Remotely sensed data are ideally suited to meet the need for spatially
complete data about forests over large landscapes. Regional maps of
forest cover are often based on multispectral satellite imagery (Cohen,
Maiersperger, Spies, & Oetter, 2001; Hansen et al., 2003; Woodcock
et al,, 1994). However, maps from satellite imagery alone cannot provide
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the level of detail about forest composition and structure often re-
quired for many forest management and research applications. Mea-
surements on field plot inventories often contain highly detailed
ecological data, but only at sampled locations so they lack complete
spatial coverage. As such, there is considerable interest in integrating
field plots with remotely sensed data to generate maps with the spa-
tial coverage of remotely sensed imagery and the ecological detail of
field plots (Ohmann & Gregory, 2002; Tomppo, 1991; Tomppo,
Goulding, & Katila, 1999).

One approach to integrating field plots and remotely sensed data is
nearest-neighbor (NN) imputation, which has been widely used in
forest inventory, monitoring, decision-support, and ecological research
(Gjertsen, 2007; Moeur et al.,, 2011; Ohmann et al., 2012; Pierce,
Ohmann, Wimberly, Gregory, & Fried, 2009; Reese et al., 2003; Spies
et al., 2007; Tomppo et al., 2008; Wilson, Lister, & Riemann, 2012).
Imputation is a method for filling in missing data by substituting values
from donor observations (Eskelson et al., 2009). In forestry applications,
imputation is used to estimate forest characteristics for large areas
where a set of mapped explanatory variables are available for the entire
spatial extent and these variables are related to a more detailed set of
response variables only available for a limited sample of the study
area. Response variables are usually measures of forest composition or
structure derived from a sample of field plots, while mapped explanatory
variables can include multispectral satellite imagery and other spatially
complete datasets (i.e. climate, topography, etc.). In NN imputation,
either a single donor observation (plot) can be chosen to fill in a given
missing observation [k = 1], or multiple donor observations can be
averaged to fill in a given missing observation [k > 1]. A major strength
of NN imputation where k = 1 is the retention of the co-variance struc-
ture of multiple response variables, because each prediction links to a set
of response values within a single plot.

As noted above, NN imputation mapping often relies on satellite
imagery as mapped explanatory data (Ohmann & Gregory, 2002;
Wilson et al., 2012). In particular, Landsat imagery (individual spectral
bands and/or vegetation indices) is attractive for regional forest mapping
due to its low cost, global coverage, long temporal record, and large
scene-sizes, as well as spectral and spatial resolutions compatible with
characterizing vegetation attributes (Cohen & Goward, 2004). However,
Landsat and other passive optical sensors have limited sensitivity to
vertical and below-canopy vegetation structure (Lu, 2006), and the in-
formation content in Landsat imagery is known to saturate in forests
with high leaf area indices (Turner, Cohen, Kennedy, Fassnacht, &
Briggs, 1999). These limitations of Landsat and other passive optical
sensors pose problems for NN imputation mapping of forest attributes
such as stand density, snags, and down wood (Eskelson, Temesgen, &
Hagar, 2012; Pierce et al., 2009), which are important for carbon inven-
tory and assessment, wildland fuels, and wildlife habitat.

Compared to Landsat and other passive optical sensors, Light
Detection and Ranging (lidar) data can better represent the three-
dimensional structure of forest canopies, and has been widely
used to characterize vegetation cover and structure (see reviews
by Dubayah & Drake, 2000; Lefsky, Cohen, Parker, & Harding,
2002; Reutebuch, Andersen, & McGaughey, 2005). Additionally,
lidar does not suffer as much as Landsat imagery from declines in
sensitivity and accuracy in forests with high leaf area index. The
cost of lidar acquisition has declined dramatically over the past decade,
such that lidar is increasingly available for large landscapes. Lidar has
the potential to greatly improve NN imputation maps of forest structural
attributes compared to maps developed using Landsat imagery or other
passive optical sensors. Recent studies using lidar have had promising re-
sults at moderate spatial resolutions (<30 m pixels) and relatively small
spatial extents (<60,000 ha); predicting presence/absence of snags and
understory attributes (Martinuzzi et al., 2009), and imputation mapping
of live tree structural attributes (Falkowski et al., 2010; Hudak,
Crookston, Evans, Hall, & Falkowski, 2008). However, no published
studies have determined if lidar can improve regional NN imputation

mapping of forest attributes such as snag and down wood abundance,
or species composition.

In addition to lidar data, advances utilizing the Landsat time series
(LTS) may also improve accuracy of NN imputation maps. With the
recent opening of the Landsat archive (Woodcock et al., 2008), there
has been a proliferation of research in multi-temporal change detection
and disturbance mapping (Huang et al., 2010; Kennedy, Yang, & Cohen,
2010; Masek et al., 2008). LTS disturbance metrics (such as time since,
magnitude of, and duration of disturbance) may improve the accuracy
of NN imputation indirectly, since many trends in forest composition
and structure are closely related to disturbance history (Franklin et al.,
2002; Oliver, 1980; Spies, 1991). This contrasts with lidar's direct char-
acterization of forest structure. LTS disturbance metrics have been
shown to have comparable predictive power to lidar for live basal area
and aboveground biomass, and superior predictive power for dead
basal area and aboveground biomass (Pflugmacher, Cohen, &
Kennedy, 2012), suggesting many accuracy improvements that lidar
can bring to imputation mapping might also be reached using LTS dis-
turbance metrics. LTS disturbance metrics also have the advantage of
complete spatial coverage and dramatically lower costs compared to
lidar. LTS disturbance metrics have been used in NN imputation map-
ping of forests (Ohmann & Gregory, 2002), but no published studies
have determined if LTS disturbance metrics can obtain predictions of
comparable accuracy to lidar within the context of regional multivariate
NN imputation maps of forest composition and structure. An additional
advantage of LTS imagery for NN imputation mapping is it permits
pixel-level normalization of multi-date images (Kennedy et al., 2010).
This is an important consideration when minimization of year-to-year
spectral variability and seamless multi-scene image mosaics are desired
to relate to plot data collected over multiple years and across large
spatial extents (Ohmann, Gregory, & Roberts, 2013).

For NN imputation and other methods linking field plots to remotely
sensed data, accuracy of plot locations and plot size are important con-
siderations. Studies relating lidar data to forest structure often do so
using field plots geo-referenced using GPS receivers that manufacturers
market as being capable of sub-meter accuracy when used under ideal
conditions (Falkowski et al., 2010; Hudak et al., 2008; Kane et al.,
2010; Pflugmacher et al., 2012). Although users and receiver manufac-
turers refer to GPS “accuracy”, it is important to note that the “accuracy”
statistic reported by GPS post-processing software is really “the preci-
sion of the solution” (i.e. a modeled estimate of geographic position),
and computed GPS positions can still deviate from true geographic po-
sitions even when very high precision (aka accuracy) is reported. The
accuracy of plot locations can be evaluated by comparing the GPS results
with the “true” location obtained using high-order survey methods, but
such comparisons are rarely made.

Unlike studies where research plots are geo-referenced using high
precision GPS receivers, regional NN imputation mapping typically relies
on existing plot networks such as the USDA Forest Service's Forest Inven-
tory and Analysis Program (FIA) (Ohmann et al.,, 2012; Wilson et al.,
2012). A variety of methods (i.e. recreational grade GPS receivers, map
interpretation, and photo interpretation) have been used to determine
the geographic locations of FIA plots. FIA plots located with recreational
grade GPS receivers (the most common method used for locating FIA
plots) have positional accuracy averaging 5-20 m, but some plots can
have positional errors exceeding 20 m (Cooke, 2000; Hoppus & Lister,
2005). Additionally, FIA plots are comprised of multiple fixed-
radius subplots, and NN imputation can be conducted using either
larger plots (i.e. aggregates of subplots) or smaller individual
subplots (McRoberts, 2009). Simulations suggest accuracy of plot
locations and plot size can strongly impact the accuracy of lidar-
derived estimates of forest biomass (Frazer, Magnussen, Wulder, &
Niemann, 2011) and Landsat-derived estimates of forest area
(McRoberts, 2010), but the impacts of plot location accuracy and
plot size (in this study referring to whole plots versus individual sub-
plots) on prediction accuracy have not been examined within the
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