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Accurate spatiotemporal snow data are crucial for understanding climate systems andmanagingwater resources
in cold regions. This paper describes a snow data assimilation system that employs the ensemble Kalman filter to
directly assimilate passivemicrowave brightness temperature data into a snow processmodel. In the system, the
Common Land Model coupled with a snow grain size growth algorithm was adopted to predict layered snow
state variables. The forcing data were derived from the Japan Meteorological Administration—Global Spectral
Model (JMA-GSM) operational global data assimilation system. The Microwave Emission Model of Layered
Snowpacks (MEMLS) was used to convert the snow state variables to brightness temperatures. The snow data
assimilation system was one-dimensionally tested at a Siberian cold region reference site of the Coordinated
Enhanced Observation Project (CEOP). The validation experiment indicates that the data assimilation system
can improve depth estimates during the accumulation period but not the ablation period. The assimilationmethod
proposed herein can be easily applied to an operational weather forecasting system to improve snow depth
estimations.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Snow cover is one of themost critical components in the cryosphere
system, and it influences global climate system variability at multiple
temporal and spatial levels (Cohen, 1994). Up to 53% of land in the
Northern Hemisphere and up to 44% of land globally may be covered
with snow during the winter (Foster & Rango, 1982). One-third of the
water used for irrigation worldwide is temporarily stored as snow
(Steppuhn, 1981). A snow surface can reflect a large fraction of incident
solar radiation due to its considerable albedo, and snow cover is an
effective insulator between the atmosphere and the soil surface. There-
fore, accurate spatiotemporal snow data are crucial for understanding
climate systems and managing water resources in cold regions (Ghan
& Shippert, 2006; Kazama, Izumi, Sarukkalige, Nasu, & Sawamoto,
2008).

In recent decades, substantial efforts have been made to develop
pertinent observations. For large-scale observations of snow, remote
sensing is an important and effective method. Visible and near-
infrared (VIR) remote sensing can detect the snow cover area (SCA) at
a high spatial resolution. For example, theModerate Resolution Imaging
Spectroradiometer (MODIS) can detect daily SCA on a global scale (Hall,
Riggs, Foster, & Kumar, 2010; Hall, Riggs, Salomonson, DiGirolamo, &
Bayr, 2002). Passive microwave (PM) remote sensing has the capability
of providing snow depth (SD) and snow water equivalent (SWE)

information independent of weather or light conditions. PM remote
sensing data, such as data from the scanning multichannel microwave
radiometer (SMMR), special sensor microwave/imager (SSM/I), and
Advanced Microwave Scanning Radiometer for Earth Observation
System (AMSR-E), enable the retrieval of SDs and SWEs on large region-
al and global scales (Chang, Foster, & Hall, 1987; Che, Dai, Wang, Liu &
Zhao, 2012; Dai, Che, Wang, & Zhang, 2012; Foster, Chang, & Hall,
1997; Kelly & Chang, 2003; Tedesco & Narvekar, 2010). Such retrieval
algorithms have a common kernel of brightness temperature difference
(TBD) at 18 and 37 GHz (or similar frequencies) that is based on the fact
that larger amounts of snow crystals can lead to greater volume scatter-
ing, which corresponds to a larger TBD. However, recent studies have
shown that snow grain size, density, and stratigraphy can significantly
influence the accuracy of SD and SWE estimates, which require more
quantitative analyses (Che, Li, Jin, Armstrong, & Zhang, 2008; Durand,
Kim, & Margulis, 2008; Durand & Liu, 2012; Foster et al., 2005; Parde,
Goita, & Royer, 2007).

Another approach for obtaining snow properties is the thermody-
namic model of snow process (Andreadis & Lettenmaier, 2012; Bartelt
& Lehning, 2002; Loth & Graf, 1993; Lynch-Stieglitz, 1994; Niwano,
Aoki, Kuchiki, Hosaka, & Kodama, 2012; Sun, Jin, & Xue, 1999). Snow
process models can describe the dynamics of snow state variables
based on snow physics. They are capable of obtaining snow density,
temperature, wetness, layering, and snow grain size (Langlois et al.,
2009),which are the input for snow radiative transfermodels or inverse
algorithms (Huang, Margulis, Durand, & Musselman, 2012; Kang &
Barros, 2012). One advantage of snow process models is that the simu-
lated snow states are spatiotemporally and physically consistent.
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However, obtaining highly accurate predictions for snow variables
using snow models is challenging due to the insufficient knowledge of
snow processes and their simplifications and parameterizations, as
well as the uncertainties in forcing data, initial states and model
parameters (Durand et al., 2008; Slater et al., 2001).

According to these analyses, snow observations and snowmodeling
have specific advantages and disadvantages. Some efforts have
attempted to integrate snow observations and snow modeling using
the data assimilation method (Andreadis & Lettenmaier, 2006; Clark
et al., 2006; De Lannoy et al., 2012; Fletcher, Liston, Hiemstra, & Miller,
2012; Sun, Walker, & Houser, 2004; Takala et al., 2011). In the North
American Land Data Assimilation System (NLDAS), in situ snow obser-
vations were successfully assimilated into land surface models (Pan
et al., 2003; Sheffield et al., 2003); the snow cover fraction (SCF) or
SCAs and SWEs derived from remote sensingdatawere also successfully
assimilated (Kumar et al., 2008; Su, Yang, Niu, & Dickinson, 2008). How-
ever, Andreadis and Lettenmaier (2006) reported a discouraging result
when the SWE products were assimilated into the variable infiltration
capacity (VIC) because there are large errors in the AMSR-E SWE
products. The assimilation of SCA/SCF into the snow process model by
an empirical relationship between SCA and SWE is an indirect method
(Andreadis & Lettenmaier, 2006; Clark et al., 2006; Niu & Yang, 2007).

Current methods focus on assimilating snow product data (such as
SD and SWE) that were interpolated from ground surface observations
or retrieved from PM remote sensing data. However, PM brightness
temperature data include not only SD and SWE but also information
such as snow grain size, density, and physical temperature as well as
stratigraphic conditions (Durand et al., 2008; Foster et al., 2005). In
contrast to previous investigations, this study explores the direct
assimilation of PM brightness temperature data into a snow process
model. The novel assimilation method employs a microwave radiative
transfer model of snow to convert the snow state variables into bright-
ness temperatures, which can be observed using satellite PM sensors.
Consequently, the assimilation scheme becomes a forward process,
and the microwave radiative transfer model input (e.g., SD, grain size,
density, and temperature in layered snowpacks) can be simulated
using the snow process model. These variables can then be analyzed
and updated using the data assimilation algorithm. Therefore, the SD,
SWE, and other snowpack variables can potentially be improved
through assimilating the PM brightness temperature data.

The purpose of this study is to evaluate the feasibility of the snow
satellite data assimilation system, that directly assimilates PM bright-
ness temperature data into a snow process model using a snow micro-
wave radiative transfer model. The snow satellite data assimilation
scheme, including the snow process model, snow microwave radiative
transfer model, and assimilation algorithm, is introduced in Section 2.
Section 3 describes the implementation of snow data assimilation
experiments at seven cold region sites of the Coordinated Enhanced
Observation Period/Asia–Australia Monsoon Project (CEOP/CAMP),
including experimental sites, forcing data, remote sensing data, and
their error estimations. The experimental results are interpreted and
discussed in Sections 4 and 5, and the conclusion and potential
improvements for the current system are described in Section 6.

2. Snow data assimilation scheme

The new snow data assimilation system includes four primary
components. First, a model operator forecasts the snow state variables.
Second, an observation operator transfers the snow state variables to
PM brightness temperatures. The observation operator is a radiative
transfer model of snowpack that simulates the brightness temperature
using the snow properties as input. Third, an assimilation algorithm
fuses the PM brightness temperatures from the system simulation and
satellite observation and updates the snow state variables. The last
component of the system is the error estimation of the observation
and model, which is the foundation of assimilation and involves the

above three parts. Fig. 1 depicts the framework of the snow satellite
data assimilation system.

2.1. Model operator

The Common Land Model (CoLM) is a recently developed state-of-
the-art land surface model (Dai et al., 2003). The original aim of the
CoLM was to develop a prototype modular land surface model for
weather forecasting and climate studies. In the CoLM model, snow is
divided into five layers at most, depending on the SD; the water and
energy cycles within the snowpack also absorb three additional out-
standing land surface schemes: LSM (Bonan, 1996), BATS (Dickinson,
Henderson-Sellers, & Kennedy, 1993), and IAP94 (Dai & Zeng,
1997). For snow compaction, three metamorphisms are considered
(destructive, overburden, and melt), whereas the snow layer is com-
bined and subdivided based on the entire SD. The internal models are
not described herein but are detailed in other studies (Dai et al., 2003).

In this study, the CoLM was employed as the model operator to
predict the snow state variables. Although the current CoLM does not
estimate the snow grain size, this is a critical variable for representing
the thermal snowpack process. To link the snow process andmicrowave
transfer models, grain size was used to determine the correlation length
and microwave scattering properties of snowpacks. Early and recent
studies have indicated that snow grain size is a significant snow variable
influencing the microwave radiation of a snowpack (Chang, Gloersen,
Schmugge, Wilheit, & Zwally, 1976; Durand et al., 2008; Langlois et al.,
2012). Therefore, a snow granular growth rate equation, which was
proposed by Jordan (1991), was coupled with the current CoLM as
follows:
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where ∂d
∂t represents the time step variation in the snow optical grain

diameter d (m), the adjustable variable g1 possesses a value on the
order of 5.0 × 10−7 (m4/kg), De0s is the effective diffusion coefficient
for water vapor in snow at 1000 mb and 0 °C (0.92 × 10−4 m2/s), Pa is
the atmospheric pressure (mb) over the snow surface, T is the snow
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��� ��� is the temperature gradient in snowpacks (z is

the distance to the nodal midpoint from the snow/ground interface
(m)), and CkT is the variation in saturation vapor pressure as a function
of temperature relative to phase k (N/m2/K):
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where k = i for a volume fraction of liquid water (θl) less than 0.02, and
otherwise, k = l; Lvl is the latent heat for evaporation of water; Lvi is the
latent heat for sublimation of ice; Rw is the gas constant for water vapor
(461.296 J/kg·K); and c1l and c1i are constants.When snow is character-
ized aswet based on the θl from the CoLM simulations, a simple relation-
ship can be used to describe the grain size growth as a function of time as
follows:
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where the θl is the liquid water volume fraction from the CoLM, the
time step default is 1 h (3600 s), and g2 is an approximate fit value
(4.0 × 10−12 m2/s).

Although the grain size of new snowmay be related to air tempera-
ture, wind and other snowfall conditions, we utilized a constant size for
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