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Leaf area index (LAI) and chlorophyll content (Cab) are important vegetation variables which can be monitored
using remote sensing (RS). Physically-based approaches have higher transferability and are therefore better suited
than empirically-based approaches for estimating LAI and Cab at global scales. These approaches, however, require
the inversion of radiative transfer (RT)models, which is an ill-posed and underdetermined problem. Four regular-
ization methods have been proposed, allowing finding stable solutions: 1) model coupling, 2) using a priori infor-
mation (e.g. Bayesian approaches), 3) spatial constraints (e.g. using objects), and 4) temporal constraints. For
mono-temporal data, only the first three methods can be applied.
In an earlier study, we presented a Bayesian object-based algorithm for inverting the SLC-MODTRAN4 coupled
canopy-atmosphere RT model, and compared it with a Bayesian LUT inversion. The results showed that the
object-based approach provided more accurate LAI estimates. This study, however, heavily relied on expert
knowledge about the objects and vegetation classes. Therefore, in this new contribution, we investigated the
applicability of the Bayesian object-based inversion of the SLC-MODTRAN4 model to a situation where no such
knowledge was available.
The case study used a 16 × 22 km2 simulated top-of-atmosphere image of the upcoming Sentinel-2 sensor, cov-
ering the area near the city of Zurich, Switzerland. Seven APEX radiance images were nadir-normalized using the
parametric Li–Ross model, spectrally and spatially resampled to Sentinel-2 specifications, geometrically
corrected, and mosaicked. The atmospheric effects between APEX flight height and top-of-atmosphere level
were added based on two MODTRAN4 simulations. The vegetation objects were identified and delineated
using a segmentation algorithm, and classified in four levels of brightness in the visible domain. The LAI and
Cab maps obtained from the Bayesian object-based inversion of the coupled SLC-MODTRAN4 model presented
realistic spatial patterns. The impact of the parametric Li–Ross nadir-normalization was evaluated by comparing
1) the angular signatures of the SLC-MODTRAN4 and Li–Rossmodels, and 2) the LAI and Cabmaps obtained from
a Li–Ross nadir-normalized image (using nadir viewing geometry) and from the original image (using the orig-
inal viewing geometry). The differences in angular signatures were small but systematic, and the differences be-
tween the LAI and Cab maps increased from the center towards the edges of the across-track direction. The
results of this study contribute to preparing the RS community for the arrival of Sentinel-2 data in the near future,
and generalize the applicability of the Bayesian object-based approach for estimating vegetation variables to
cases where no field data are available.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Global climate and carbon cycles are strongly influenced by the
Earth's biosphere, and in particular by its vegetation component.

Vegetation variables, such as leaf area index (LAI) and leaf chlorophyll
content (Cab), are therefore important inputs in dynamic global vegeta-
tionmodels (DGVM) (Foley, Levis, Costa, Cramer, & Pollard, 2000). These
vegetation inputs can be provided in a spatially continuous way and at
global scale by satellite remote sensing (Bacour, Baret, Béal, Weiss, &
Pavageau, 2006; Baret et al., 2007; Myneni et al., 2002).

Usually, remote sensing data are first atmospherically corrected to
top-of-canopy (TOC) reflectance data before they are used for estimating
the vegetation variables. The variables can be estimated by using two
main approaches. Empirical approaches rely on statistical relationships
between the vegetation variables and the TOC reflectance data. The
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statistical relationships, however, require extensive field data col-
lection and are only valid for the specific conditions for which
they were developed, including sensor, acquisition geometry, and
vegetation type (Dorigo et al., 2007; Ustin et al., 2009). Physically
based approaches rely on vegetation canopy reflectance models,
which are mostly based on radiative transfer (RT) theory, and are
therefore more general because they can be adapted for different
sensors, acquisition geometry and be parameterized for various
vegetation types (Gemmell, Varjo, Strandstrom, & Kuusk, 2002;
Malenovský et al., 2008).

1.1. Physically-based estimation of vegetation variables

To estimate the vegetation variables from the TOC reflectance data,
however, the canopy RTmodel has to be inverted. This inverse problem
is ill-posed (Combal et al., 2002; Jacquemoud et al., 2009), and four
types of regularization methods have been proposed (Baret & Buis,
2008): 1) coupling models, 2) using a priori data, 3) using spatial con-
straints and 4) using temporal constraints, or combinations of these.

Model coupling allows reducing the number of input parameters,
thereby reducing the under-determined nature of the inversion
(Baret & Buis, 2008). The maximum model coupling set-up involves
soil, leaf, canopy, and atmosphere RT models. Using such a coupled
model allows working directly with the top-of-atmosphere (TOA)
radiance data, skipping the atmospheric correction step (Laurent,
Verhoef, Clevers, & Schaepman, 2011a). The atmospheric correction
requires inverting the atmospheric RT model, whereas, when working
at TOA level, the atmospheric RT model is used in forward mode,
which is more accurate and allows for better inclusion of canopy direc-
tional effects (Laurent, Verhoef, Clevers, & Schaepman, 2011b), topogra-
phy and adjacency effects in the coupled canopy-atmosphere model.
Despite the higher model complexity, the traditional inversion tech-
niques can be used, and the same knowledge of the atmospheric param-
eters as in the atmospheric correction is sufficient.

A priori information allows restricting the variable space to a smaller
subspace, thus facilitating the inversion (Combal et al., 2002). Bayesian
approaches use the a priori data directly in the cost function, and have
been widely used for estimating vegetation variables (Lavergne et al.,
2007; Li, Gao, Wang, & Strahler, 2001; Pinty et al., 2007). Spatial con-
straints allow using the information contained in the neighbouring
pixels in the inversion (Atzberger, 2004; Atzberger & Richter, 2012;
Houborg, Anderson, & Daughtry, 2009), while temporal constraints
allowusing the information contained in a time series of remote sensing
observations (Kötz, Baret, Poilve, &Hill, 2005; Lauvernet, Baret, Hascoët,
Buis, & Le Dimet, 2008).

For a single RS image, themaximum regularization set-up involves a
coupled canopy-atmosphere RT model, a priori information, and spatial
constraints (Laurent, Verhoef, Damm, Schaepman, & Clevers, 2013).

1.2. Sentinel-2

Sentinel-2 is a scheduled multispectral and high spatial resolution
mission which is part of the Global Monitoring for Environment and Se-
curity (GMES) program (Berger, Moreno, Johannessen, Levelt, &
Hanssen, 2012; Drusch et al., 2012; Malenovský et al., 2012). The spec-
tral and spatial characteristics for the Sentinel-2 mission have been
specified so as to provide enhanced continuity for SPOT and Landsat
missions in the visible (VIS), near infrared (NIR) and short-wave infra-
red (SWIR) spectral domains. The Multi Spectral Instrument (MSI) on-
board Sentinel-2 will have 13 spectral bands in the range from 400 to
2400 nm, with pixel sizes of 10, 20, or 60 m, depending on the spectral
band (Drusch et al., 2012; Sentinel-2 PDGS Project Team, 2011). The
first of two satellites is planned to be launched in 2014. Until Sentinel-
2 data are available, several studies have investigated the potential of
Sentinel-2 for vegetation applications.

Most of the Sentinel-2 exploratory studies focussed on the spec-
tral dimension, selecting appropriate bands from surrogate sensors
such as CHRIS (Atzberger & Richter, 2012; Delegido, Verrelst,
Alonso, & Moreno, 2011) and HyMap (Richter, Hank, Vuolo,
Mauser, & D'Urso, 2012), or convolving the bands of hyperspectral
sensors such as CASI (Richter, Atzberger, Vuolo, & D'Urso, 2011a;
Richter, Atzberger, Vuolo, Weihs, & D'Urso, 2009) or field spectrom-
eters (Clevers & Gitelson, 2013; Herrmann et al., 2011) to the
Sentinel-2 bands. Limited by the spectral range of the surrogate
sensor used, most of these studies were not able to simulate the
blue and the SWIR Sentinel-2 bands in full.

Further, few studies included the varying pixel size in their sim-
ulated Sentinel-2 data (Richter, Wang, Bachmann, & Schläpfer,
2011b), and even fewer investigated the potential of the spatial
characteristics of the Sentinel-2 data (Hedley, Roelfsema, Koetz, &
Phinn, 2012; Verrelst et al., 2012). Only two studies made use of
top-of-atmosphere simulated Sentinel-2 data, and they focussed
on cloud detection and correction (Hagolle, Huc, Pascual, &
Dedieu, 2010; Richter et al., 2011b), but not on vegetation.

Therefore, despite its potential use for supporting the develop-
ment of (pre)processing algorithms in advance, a full TOA simulat-
ed image compliant with all spectral and spatial characteristics of
the Sentinel-2 mission so far was still missing.

1.3. Objectives

The twomain objectives of this study were to: 1) build a realistic
TOA Sentinel-2 image with full spectral and spatial characteristics
as specified in the Sentinel-2 documentation, and 2) estimate LAI
and Cab from the Sentinel-2 image by inverting a coupled canopy-
atmosphere RT model.

The particular spatial and spectral characteristics of Sentinel-2
can only be simulated using high resolution airborne imaging
spectrometer data. APEX was chosen for this purpose because of
its unprecedented spectral, spatial and radiometric resolution. Its
continuous spectral coverage of the range 380 to 2500 nm (Jehle
et al., 2010) allowed simulating all 13 Sentinel-2 bands. Each
band was simulated with at least three APEX bands (D'Odorico,
Gonsamo, Damm, & Schaepman, 2013), and each Sentinel-2 pixel
was covered by at least nine APEX pixels. The signal-to-noise ratio
(SNR) of APEX is also well above the expected SNR of Sentinel-2.
Seven APEX images were normalized to nadir viewing before
being spatially and spectrally resampled and mosaicked. The simu-
lated Sentinel-2 image covers an area of 16 × 22 km2 around the
city of Zurich, Switzerland, which includes a wide range of land
cover types (e.g., agriculture, forest, lakes, an airport and urban
areas). In order to obtain the most accurate LAI and Cab estimates
as possible from this single image, the Bayesian object-based ap-
proach of Laurent et al. (2013) was chosen, because it combines
the strengths of model coupling, a priori data and spatial con-
straints regularization methods. This latter study, however, relied
on manual digitization of the objects used to apply the spatial con-
straints and was based on extensive field data on vegetation classes
and their associated a priori data. Therefore, two specific objectives
were added to themain objectives: 1) evaluate the effect of the nor-
malization to nadir viewing of the APEX images, and 2) propose an
image-based approach for extracting objects, and a general vegeta-
tion classification associated with a priori data which does not re-
quire field data.

The results of this study contribute to preparing the RS commu-
nity for the arrival of Sentinel-2 data in the near future, and gener-
alize the applicability of the Bayesian object-based approach for
estimating vegetation variables to cases where no field data are
available, as is generally the case for studies in less accessible re-
gions as well as global studies.
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