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Mapping aboveground carbon density (ACD) in tropical forests can enhance large-scale ecological studies and
support CO2 emissionsmonitoring. Light Detection and Ranging (LiDAR) has proven useful for estimating carbon
density patterns outside of field plot inventory networks. However, the accuracy and generality of calibrations
between LiDAR-assisted ACD predictions (EACDLiDAR) and estimated ACD based on field inventory techniques
(EACDfield) must be increased in order to make tropical forest carbon mapping more widely available. Using a
network of 804 field inventory plots distributed across a wide range of tropical vegetation types, climates and
successional states, we present a general conceptual and technical approach for linking tropical forest EACDfield

to LiDAR top-of-canopy height (TCH) using regional-scale inputs of basal area and wood density. With this
approach, we show that EACDLiDAR and EACDfield reach nearly 90% agreement at 1-ha resolution for a wide
array of tropical vegetation types. We also show that Lorey's Height – a common metric used to calibrate
LiDAR measurements to biomass – is severely flawed in open canopy forests that are common to the tropics.
Our proposed approach can advance the use of airborne and space-based LiDAR measurements for estimation
of tropical forest carbon stocks.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Over the past decade, estimation of tropical forest carbon stocks has
evolved from an activity based largely on field inventories (e.g., Malhi
et al., 2006), to an effort assisted by airborne and spaceborne remote
sensing (Asner et al., 2010; Baccini et al., 2012; Drake et al., 2002;
Lefsky et al., 2002; Saatchi et al., 2011). As the more recent approach,
remote sensing-based carbon estimates are usually compared to field
inventory-based assessments. However, as noted by Clark and Kellner
(2012), virtually all field-based carbon assessments also represent
estimates. Inventory data (i.e., tree diameters, heights, wood densities)
are passed into allometric models (e.g., Chave et al., 2005), previously
developed by harvesting andweighing trees to determine their biomass
(of which ~48% is carbon in tropical forests; Martin & Thomas, 2011),
and the summation of each tree's carbon stock estimate within a plot
is derived as thefield-estimated aboveground carbon density (EACDfield,
units of MgCha−1). Uncertainty can be estimated as well (Chave et al.,
2004), but truemeasurement of ACDwill ultimately require whole-plot
harvests of forest biomass,which are extremely labor intensive and thus
rarely carried out (Colgan, Asner, & Swemmer, 2013). In the interim,
tree allometry will continue to underlie EACDfield because allometry
is one of the most conserved properties in nature (e.g., Niklas, 2006),

and remote-sensing approaches that can accurately predict EACDfield

will be critical to carbon stock mapping and monitoring.
LiDAR (light detection and ranging) has become a commonly used

technology in the effort to remotely predict EACDfield in many forest
types (e.g., Ene et al., 2012; Gobakken et al., 2012; McRoberts, Næsset,
& Gobakken, 2013). Unlike passive optical techniques, LiDAR uses
emitted laser pulses to derive metrics of forest structure in three
dimensions (e.g., Omasa, Qiu, Watanuki, Yoshimi, & Akiyama, 2003).
Whereas EACDfield assessments have applied tree allometry from the
bottom-up to all trees encountered in a plot, most LiDAR-based efforts
apply allometric equations at the whole plot or stand level. This
approach is not strictly allometry, which refers to scaling at the
organism level, but instead it can be thought of as plot-aggregate
allometry. Plot-aggregate allometry posits that if forest structure and
biomass organization follow consistent scaling patterns, simple plot-
level variables could capture as much information about EACDfield as
full field inventories. Several tropical studies have used LiDAR metrics,
such as canopy profile height, to form plot-aggregate allometries to
predict EACDfield (e.g., Asner et al., 2010; Drake et al., 2002; Lefsky
et al., 2002). Other tropical studies have utilized a ‘daisy-chain’ of plot-
aggregate allometries, for example, by linking LiDAR metrics to the
plot variable Lorey's height – the basal area-weighted average height
of all trees – and subsequently linking Lorey's height to EACDfield

(Harris et al., 2012; Saatchi et al., 2011). However, the trade-offs
between direct calibration of LiDAR metrics to EACDfield versus daisy-
chain type approaches have not been communicated in the literature.
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In a previous study, we found that relationships between simple
plot-aggregate allometries and airborne LiDAR metrics are not
consistent across tropical ecosystems (Asner et al., 2012). To address
the additional variation, we devised a general approach to plot-
aggregate allometry and LiDAR calibration in tropical forests. We
argued that because tree-level carbon stocks depend on diameter,
wood density and height (Chave et al., 2005), EACDfield should similarly
depend on basal area (the cross sectional area of all stems), basal-area-
weighted wood density, and canopy height. However, our previous
airborne LiDAR calibrations to plot-aggregate allometry for tropical
forests were based on a particular 3-D metric termed Mean Canopy
Profile Height, or MCH (sensu Lefsky et al., 2002). The MCH metric
approximates the vertical centroid of all canopies within a plot, which
in turn, is a proxy for the distance stretching from the ground to the
top of the main stem of the trees. While this approach yielded
consistent relationships with EACDfield when using a single LiDAR
sensor (e.g., Asner, Hughes, Varga, Knapp, & Kennedy-Bowdoin, 2009;
Asner et al., 2010, 2011, 2012; Mascaro et al., 2011), we recently
found that different LiDAR sensors produce inconsistent MCH values
based on instrument specifications. In particular, laser beamdivergence
and power, and the sensitivity of the LiDAR receiver, causes differences
among LiDAR measurements of the vertical distribution of the canopy
tissues, upon which the MCH and similar metrics are calculated (see
also Næsset, 2009). This issue affects all LiDARmetrics that are sensitive
to the vertical profile of the vegetation, such as RH50, RH80, and many
others (Ni-Meister et al., 2010). Fortunately however, our tests also
indicate that top-of-canopy height (TCH) – the distance from ground
to the topmost point on the canopy – is a much more consistent index
among different modern LiDAR sensors, thereby offering a way to
circumvent the highly variable, sensor-specific performance of vertical
profile metrics. However, the generality of TCH-based approach to
plot-aggregate carbon stock estimation has not been broadly examined
for tropical vegetation.

Another recent development is that LiDAR-based estimates of
tropical forest ACD (EACDLiDAR) approach EACDfield when field plots
reach one hectare in size (Asner et al., 2010; Mascaro, Detto, Asner, &
Muller-Landau, 2011; Zolkos, Goetz, & Dubayah, 2013). Several factors
contribute to this: (1) errors caused by spatial misalignment of plots
and LiDAR data are diminished with larger plots (Asner et al., 2009),
(2) integrating measurements over larger plots provides a more
representative average (Zolkos et al., 2013), and (3) disagreement in
protocol between LiDAR and field observations – namely the effects of
bisecting tree crowns in LiDAR data versus calling a tree “in” or “out”
of the plot in field data – decreases to a manageable level (Mascaro,
Detto, Asner, & Muller-Landau, 2011). Although such patterns may be
consistent in sign across tropical vegetation types, the magnitude of
the plot-size effect on error – and particularly the improvements
detected at 1 ha in size – reflect not plot size per se, but the size of the
plot relative to the average crown size, which provides the bulk of the
LiDAR return signal (e.g., contrast with boreal forest, where crowns
are much smaller; Naesset et al., 2011). Because 1-ha plots entail a
very large amount of labor to measure for biomass inventory (indeed,
they are the upper limit in the size of most tropical forest inventory
plots; Malhi et al., 2006), they represent a costly and labor-intensive
trade-off with the number of plots that must be used for validation.
This issue is central to determining the generality of LiDAR-based
approaches for tropical forest carbon mapping, and thus additional
research thatmight reduce the need for exhaustive plot-based calibration
is warranted.

Here, we use a network of 804 tropical forest inventory plots to
assess the ability of a very simple LiDAR metric – top of canopy height
or TCH – to predict EACDfield for a wide range of tropical vegetation
types and ecological settings. We had three specific objectives: First,
we assessed the effectiveness of calibrating LiDAR TCH to EACDfield

using both regionally- and generically-constrained estimates of plot-
aggregate allometry. Second, we tested whether Lorey's Height can be

used to enhance EACDfield predictions as is often practiced in LiDAR-
assisted carbon mapping studies. Finally, we examined the effect of
plot size on LiDAR predictions of EACDfield, with specific attention to
the use of fewer 1-ha validation plots to save time and reduce project
cost.

2. Methods

2.1. Field plots

Greatly expanding on Asner, Mascaro, et al. (2012), our field plot
network includes plots in 14 distinct tropical ecoregions, with more
than a half million trees measured, and across an enormous range of
forest types, floristic composition, disturbance regimes and successional
states. The network presented here has been updated to 804 plots in
Colombia, Hawaii, Madagascar, Panama and Peru (50 of which are
reserved for validation; Table 1). The plots are positioned from sea
level in the Pacific, to more than 3500 m altitude in the Andes, and
across a wide range of climate conditions (mean annual precipitation
range: 180–11,000 mm year−1; mean annual temperature range: 6–
27 °C). The types of vegetation included in the database range from
dense, humid lowland forest to dry spiny woodlands, and frommature,
closed canopy forests to open woodland-savanna physiognomies. A
complete description of the plots can be found in the references
provided in Table 1, and a plot-level listing of the data used for LiDAR-
to-field calibration is provided in the Online Electronic Supplement 1.

EACDfield was assessed for each plot following a consistent protocol
detailed by Asner, Mascaro, et al. (2012). The minimum diameter class
for all stems was standardized to 5 cm. In Peru and Colombia, stems
5–10 cm in size were estimated by a subplot one-eighth the area of
the main plot. In Madagascar, a similar scheme was used for stems 5–
10 cm and 10–20 cm in size (Asner, Clark, et al., 2012). Plot size and
configuration differed across projects (Table 1), variables we consider
in the Uncertainty section. However, tree-level allometries used to
estimate biomass were consistent across all plots, and are based on
the most local information first, followed by generalized equations from
Chave et al. (2005). Tree height for field inventory data was measured
for the three largest trees in each plot for all project areas, and for all
trees in more recent projects, either using laser ranging hypsometers
(Impulse 2000, Laser Technology, Durham NC), or clinometers. For
remaining trees without a height measurement, height-diameter models
were used to estimate individual tree height (sensu Chave et al., 2005). In
all cases, we used height-diameter allometry at the species or regional
level rather than defaulting to allometric equations that exclude a
height parameter unless such equations were species-specific (thereby
subsuming species-level diameter-to-height variation in the coefficients,
discussed below). The inclusion of height in allometry has been found
to be essential to preventing overestimation of EACDfield in nearly all
tropical regions (Feldpausch et al., 2012).

2.2. LiDAR data

The LiDAR data were collected using the Carnegie Airborne
Observatory (CAO) Alpha (Asner et al., 2007) or AToMS (Asner
et al., 2012) sensor packages, with data collection and analysis
methods applied consistently across sites. Both the Alpha and
AToMS scanning LiDAR sensors are full waveform, but the work
presented here relied only on the discrete return data of up to four
returns per pulse in order to make the results applicable to a much
wider range of LiDARs currently in operation throughout the world.
Over all field plots listed in Table 1, the CAO LiDARs were operated
at 2000m above ground level (a.g.l.) with a 30o field of view, pulse
repetition frequency of 50 kHz, and a ground speed of ≤110 knots.
Both LiDARs have a laser beam divergence set to 0.56 mrad (1/e),
providing 1.12 m laser spot spacing from 2000 m a.g.l. However,
50% overlap between adjacent flight lines resulted in two laser
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