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Incorporation of a priori defined plant associations into remote sensing products is a major challenge that has
only recently been confronted by the remote sensing community. We present an approach to map the spatial dis-
tribution of such associations by using plant indicator values (IVs) for salinity, moisture and nutrients as an inter-
mediate between spectral reflectance and association occurrences. For a 12 km? study site in the Netherlands, the
relations between observed IVs at local vegetation plots and visible and near-infrared (VNIR) and short-wave in-
frared (SWIR) airborne reflectance data were modelled using Gaussian Process Regression (GPR) (R? 0.73, 0.64
and 0.76 for salinity, moisture and nutrients, respectively). These relations were applied to map IVs for the com-
plete study site. Association occurrence probabilities were modelled as function of IVs using a large database of
vegetation plots with known association and IVs. Using the mapped IVs, we calculated occurrence probabilities
of 19 associations for each pixel, resulting in both a crisp association map with the most likely occurring associ-
ation per pixel, as well as occurrence probability maps per association. Association occurrence predictions were
assessed by a local vegetation expert, which revealed that the occurrences of associations situated at frequently
predicted indicator value combinations were over predicted. This seems primarily due to biases in the GPR pre-
dicted IVs, resulting in associations with envelopes located in extreme ends of IVs being scarcely predicted.
Although the results of this particular study were not fully satisfactory, the method potentially offers several ad-
vantages compared to current vegetation classification techniques, like site-independent calibration of associa-
tion probabilities, site-independent selection of associations and the provision of IV maps and occurrence
probabilities per association. If the prediction of IVs can be improved, this method may thus provide a viable
roadmap to bring a priori defined plant associations into the domain of remote sensing.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Lucieer, & Jiirgens, 2010; Thomas et al,, 2003). The vegetation units
are often based on vegetation properties that are typically well discern-

Mapping the characteristics and extent of natural vegetation using
remote sensing has been the subject of many studies in recent years
(see for a review: Ustin & Gamon, 2010). A common challenge is to sim-
plify and generalize the complex interactions in natural vegetation so
that meaningful information on abiotic and biotic conditions can be de-
rived (Janssen, 2004; Kiichler, 1984; Kiichler & Zonneveld, 1988;
Sanders, Dirkse, & Slim, 2004). A typical method for this is to define veg-
etation units for the specific site and subsequently delineate those using
the remote sensing data and a classification technique (Belluco et al.,
2006; Kokaly, Despain, Clark, & Livo, 2003; Oldeland, Dorigo, Lieckfeld,
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ible by remote sensing techniques, such as vegetation structure, bio-
chemistry and phenology (Ustin & Gamon, 2010). Other approaches
ignore the concept of crisp vegetation units and visualize the continuous
properties of vegetation, such as position on floristic gradients
(Feilhauer, Faude, & Schmidtlein, 2011), forest diversity (Feilhauer &
Schmidtlein, 2009), plant strategies (Schmidtlein, Feilhauer, &
Bruelheide, 2011) or fractional cover of vegetation and soil (Asner &
Heidebrecht, 2002). Other studies aim to isolate a particular feature of
interest, such as nonnative species (Underwood, Ustin, & DiPietro,
2003) or invasive woody species (Hantson, Kooistra, & Slim, 2012). Dis-
crimination and identification of individual tree or shrub species is cur-
rently feasible in some ecosystems (Cho et al., 2010; Clark, Roberts, &
Clark, 2005; Dennison & Roberts, 2003; Roth, Dennison, & Roberts,
2012; Xiao, Ustin, & McPherson, 2004) and may benefit from combining
LiDAR and hyperspectral data (Asner & Martin, 2009).
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The capacities of remote sensing might be more comprehensively
exploited when remote sensing products reach potential end users
such as nature managers and policy makers. However, such profession-
al nature management and conservation agencies often employ a spe-
cific - and different from above - definition of vegetation units to
describe their assets. Instead, these vegetation units are commonly cre-
ated using a phytosociological approach, where species abundance data
are used in cluster analysis and ordination to create discrete vegetation
units (Dengler, Chytry, & Ewald, 2008) that are differentiated by the
presence or absence of diagnostic species (Verrelst, Geerling, Sykora,
& Clevers, 2009). Current sensors are not suited to detect diagnostic
species, all the more since they usually are sparse and have a low abun-
dance (Verrelst et al., 2009). Therefore, incorporation of phytosociolog-
ical vegetation units has only recently been confronted by the remote
sensing community, but not without complications. For example,
Schmidt et al. (2004) found that phytosociological units could only be
successfully mapped after consulting expert knowledge in addition to
hyperspectral and LiDAR data. Verrelst et al. (2009) chose to map clus-
ters of phytosociological vegetation units because the individual vege-
tation units could not be differentiated directly. Given such difficulties,
a comprehensive method that translates remote sensing data to vegeta-
tion units that are defined a priori and based on species composition,
like phytosociological units, is desired.

We explore a method that uses vegetation characteristics such as
plant traits (i.e.,, morphological, physiological or phenological features
measurable at the individual plant level, Violle et al., 2007) or indicator
values (IVs, Diekmann, 2002, see Section 2.1 for definition), as an inter-
mediate between spectral reflectance and vegetation units. Such vege-
tation characteristics relate directly to plant biochemical, biophysical
and phenological properties; properties that are also observable with
remote sensing techniques (Asner & Martin, 2008; Asner et al., 2011;
Schmidtlein, 2005; Ustin & Gamon, 2010; Verrelst, Mufioz, et al.,
2012).In addition, it has been demonstrated that variation in vegetation
characteristics is constrained by local environmental conditions and
that plants themselves have limited ability in adapting their character-
istic values upon a change in environmental conditions (Ackerly &
Cornwell, 2007; Bello et al., 2009). Consequently, different vegetation
units may be distributed along an n-dimensional vegetation characteris-
tic space. This holds true for a priori defined vegetation units; their oc-
currence probability can be calculated for a given set of plant traits
(Douma, Aerts, et al.,, 2012) or Vs (Witte, Wéjcik, Torfs, De Haan, &
Hennekens, 2007). This means that vegetation characteristics as pre-
dicted by remote sensing may be used to calculate vegetation unit oc-
currence probability.

This paper evaluates this hypothesis by using plant IVs to differenti-
ate between a priori defined vegetation units that are often used among
ecologists in the Netherlands. Two key concepts, IVs and the vegetation
units, are described in detail first. Following this, a case study is present-
ed where 19 representative vegetation units have been mapped. The
resulting maps were validated by expert judgement and by comparison
with a pre-existing vegetation map.

2. Method & materials
2.1. General methodology

A well-known method for determining a priori defined vegetation
units is the school of Braun-Blanquet, also called ‘phytosociology’.
Here, discrete vegetation units, collectively called syntaxa, are clustered
hierarchically into (from low to high ranks) associations, alliances,
orders and classes. The integral hierarchical tree of these syntaxa is re-
ferred to as a syntaxonomical system (Weber, Moravec, & Theurillat,
2000). The association is the basic unit and defined as ‘a plant commu-
nity of definite floristic composition which presents a uniform physiog-
nomy and which grows in uniform habitat conditions’ (Weber et al.,
2000). Plant associations are defined by the presence of diagnostic

species (in particular: ‘character’ species and ‘differential’ species). As
a showcase for the proposed method, we mapped plant associations ac-
cording to the Dutch standard work of phytosociology ‘De Vegetatie van
Nederland’ (DVN, the vegetation of the Netherlands, Schaminée,
Stortelder, & Westhoff, 1995). This system defines 228 associations
which are grouped into 89 alliances, 58 orders and 43 classes. In addi-
tion to the syntaxon names, the syntaxa in DVN are labelled with a 6
digit code from which their position in the hierarchical structure can
be derived; the first two numbers indicate the class, the third and fourth
characters indicate the order and alliance respectively, while the final
two numbers determine the association. In this paper, the relevant
associations are introduced once with their name and code and subse-
quently identified with their code only.

The method investigated in the paper pivots on the concept of using
vegetation characteristics as an intermediate between spectral reflec-
tance and occurrence of plant associations. In this case study, we use
IVs as vegetation characteristics that couple the remote sensing data
to associations. Originally introduced by Ellenberg et al. (1991), IVs
use rankings of plant species occurrences to identify the most common
occurrence of a species along a normalised environmental gradient
(Schmidtlein, 2005). IVs are widely used in plant and systems ecology,
but their use is also criticized due to supposed subjectivity and potential
circular reasoning (Diekmann, 2002; Klaus et al, 2012; Schaffers &
Sykora, 2000; Zeleny & Schaffers, 2012). It is important to note that an
IV is not a physical quantity that can be measured on a plant, but rather
an artificially constructed property of a plant species. Another important
aspect of our approach is that we did not use Ellenberg IVs. Instead, we
employed IVs that are designed specifically for the Netherlands and that
have non-integer values for individual species. This continuous repre-
sentation is based on direct field observations (instead of expert knowl-
edge) and allows for more reliable calculation of vegetation plot mean
IVs. We used an already existing list of IVs per plant species that was
compiled earlier; refer to Witte et al. (2007) for a detailed explanation
on how this list has been compiled.

The general methodology is represented in Fig. 1. Firstly, in order to
mabp IVs for the whole site, observed IVs of local vegetation plots were
related to top of canopy reflectance values derived from airborne optical
remote sensing imagery using Gaussian Process Regression (GPR) (step
1, Fig. 1). GPR model accuracy was assessed using an independent vali-
dation set of local vegetation plots. Secondly, Gaussian Mixture Density
Modelling (GMDM) was used to define Probability Density Functions
(PDFs) from a national database of vegetation plots (step 2, Fig. 1).
Each PDF describes the Bayesian probability of association occurrence
at a given combination of IVs. Finally, based on predicted IVs (step 1,
Fig. 1) and the PDFs of the associations (step 2, Fig. 1), Bayesian occur-
rence probabilities were calculated for each association at each pixel
(step 3, Fig. 1), visualizing the occurrence probability per association.
In addition, the association corresponding to the highest occurrence
probability was assigned to each pixel, creating a crisp classification of
associations (step 3, Fig. 1). The certainty of the predicted association
was represented as the maximum occurrence probability per pixel. A
local vegetation expert assessed the accuracy of the predicted associa-
tion occurrence. In addition, we compared the predicted distribution
patterns per association with a pre-existing vegetation map of the
study site.

2.2. Study site

The island of Ameland, located in the Dutch part of the Wadden Sea,
was selected as study area. The Wadden Sea is located southeast of the
North Sea, stretching from the Netherlands to Denmark; it is an intertid-
al zone of great ecological importance, as is reflected by its assignment
as a Natura 2000 area and as an UNESCO world heritage site. Ameland
(60 km?, 53.45°N, 5.684°E, Fig. 2) is the third largest Dutch island in
the Wadden Sea and has a large variety of ecosystems, ranging from
dry and wet dunes, to tidal salt marshes, heath lands and fresh water
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