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The increasing availability of satellite images derived from multiple sensors creates opportunities for broader
spatial and temporal coverage but also methodological challenges. We present a geostatistical inverse
modeling (GIM) approach for merging coarse-resolution images with variable resolutions and for super-
resolution (i.e., predictions at the sub-pixel level) mapping of continuous spatial processes. GIM can explicitly
account for the differences in spatial supports of multiple datasets. The restricted maximum likelihood method
was used for parameter estimations associated with the change-of-support problem. We used GIM to produce
both spatial predictions of a target image and prediction uncertainties, while preserving the values of original
measurements. GIM is totally data driven, and covariance parameters for a target resolution can be directly
derived from measurements. We also developed a moving-window GIM approach to accommodate spatial
nonstationarity and reduce computational burden associated with large image data. First, we demonstrated
GIM and moving-window GIM on synthetic images. Aggregated synthetic images with variable resolutions
were merged to produce a single resolution image. The results show that the two approaches can produce accu-
rate spatial predictions and generate prediction uncertainties. Second, we applied moving-window GIM for
merging aerosol optical depth (AOD) data with variable resolutions, which were derived from two satellite sen-
sors. Themodeling results show that moving-windowGIM can be applied formerging complementary AODdata
from two sensors and for super-resolution mapping of global AOD distributions. Therefore, we can conclude that
GIM is a practical solution for merging complementary coarse-resolution images and for super-resolution
mapping of continuous spatial processes.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Synthesizing complementary information derived from multiple
sensors prompts the need to study rigorous data fusion algorithms.
Data fusion is a process that integrates information derived from differ-
ent sensors or different spectral bands of the same sensor and produces
a single image that contains complementary information frommultiple
sources, while minimizing loss or distortion of the original data (Hall,
2004; Pohl & Van Genderen, 1998). In this work, we focus on statistical
algorithms for merging measurements derived from multiple coarse-
resolution sensors. Statistical data fusion combines statistically hetero-
geneous samples from marginal distributions to make statistical infer-
ence about the unobserved joint distributions or functions of them
(Braverman, 2008). Statistical data fusion, including those based on
geostatistics, can produce spatial predictions of pixel values (Atkinson,
Pardo-Iguzquiza, & Chico-Olmo, 2008). Recently, several geostatistical

algorithms, including fixed ranking kriging (Cressie & Johannesson,
2008; Shi & Cressie, 2007), fixed ranking filtering (Cressie, Shi, &
Kang, 2010; Kang, Cressie, & Shi, 2010), spatial statistical data fusion
(Nguyen, Cressie, & Braverman, 2012), space-time data fusion
(Braverman, Nguyen, & Cressie, 2011), and moving-window kriging
(Hammerling, Michalak, & Kawa, 2012), have been developed for map-
ping global distributions of environmental variables, such as aerosol op-
tical depth (AOD) and carbon dioxide (CO2), with sparsely distributed
remotely sensed data. The numerous algorithms for merging measure-
ments from different spectral bands (e.g., pan-sharpening) are beyond
the scope of this paper.

Measurements from remote sensing sensors are constantly
influenced by factors like atmospheric conditions, electronic noise of
sensors, and changes in illumination. In order to build geostatistical
models of sensor measurements contaminated with measurement er-
rors, we take a stochastic view of remote sensing images. We regard
the true spatial process of interest (i.e., spectral radiance) as a random
field, i.e., a spatial random process with a set of random variables that
have certain probability distributions. Then, a remote sensing image
covering an area can be conceived as a realization of the random field.
In thiswork,we adopt theGaussian randomfieldmodel,which involves
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a set of Gaussian probability density functions for random variables.
For remote sensing measurements, the values of continuous spatial
processes of interest are regularized to discrete pixels by aweighted av-
erage process, with the spatial weights determined by point spread
functions (PSFs) of sensors (Jupp, Strahler, & Woodcock, 1988). The ef-
fective instantaneous field of view (EIFOV) of the sensor is an area over
whichmeasurements are averaged. EIFOV defines the spatial support of
sensor measurements. Spatial support is a geostatistical concept that
means the shape, size, and orientation of measurements (Gotway &
Young, 2002, 2005). The value assigned to a pixel represents the aver-
age radiance arriving at the sensor from the EIFOV (Jupp, Strahler &
Woodcock, 1988). Sensors with different sizes of pixels have differ-
ent EIFOVs. As a result, measurements from these sensors have dif-
ferent spatial supports.

Merging remote sensing images with variable resolutions usually
involves the change-of-support problem (Curran & Atkinson, 1999;
Gotway & Young, 2002, 2005). Several geostatistical algorithms have
been developed to solve the change-of-support problem. Area-to-
point krigingwas developed for downscaling areal data to point support
(Kyriakidis, 2004; Kyriakidis & Yoo, 2005). Goovaerts (2008) developed
a practical semivariogram deconvolution algorithm to derive point sup-
port variogramparameters from areal data. This algorithm solved one of
the key problems in the practical application of area-to-point kriging.
Moreover, a parallel computing algorithm has been developed for
speeding-up the computations involved in the practical application of
area-to-point kriging (Guan, Kyriakidis, & Goodchild, 2011). Area-to-
point kriging has the potential for downscaling remote sensing data.
Nguyen et al. (2012) developed a spatial statistical data fusion ap-
proach, which integrates a change-of-support model into fixed rank
kriging for multi-resolution data fusion. It was applied for merging
variable-resolution AOD images derived from the Multi-angle Imaging
Spectroradiometer (MISR) and the Moderate Resolution Imaging
Spectroradiometer (MODIS) sensors. Sales, Souza, and Kyriakidis
(2013) applied a Kriging with external drift (KED) method for in-
creasing 500-m resolution (bands 3–7) MODIS images to 250-m
resolution.

The spatially varying dependence structure of random variables
(i.e., spatial nonstationarity) is another problem to be dealt with
when working with remote sensing images covering large geographic
areas. In geostatistics, a fundamental assumption of most models is
that random fields are second-order stationary, i.e., in a relatively
small region the mean values of random variables are constant and
the covariance between the values of random variables only depends
on the distance between them (Chilès & Delfiner, 1999). However, for
spatial data covering large geographic areas, this assumption may not
be true because remote sensing images covering large geographic
areas usually include spatial nonstationarity. In this work, we differen-
tiated two types of spatial nonstationarity: one is spatial nonstationarity
in the mean values of regionalized variables, and the other is spatial
nonstationarity in the covariance structure. The need to address spatial
nonstationarity has been discussed in the field of geostatistics over
the past decades. Universal kriging is one way to address spatial
nonstationarity in the mean values of regionalized variables. Hass
(1990) applied a moving-window kriging approach to model acid
depositions. In the moving-window kriging model, measurements in
local-windows are used for both parameter estimations and spatial
predictions. This approach is simple to be implemented, and it alleviates
the problem of spatial nonstationarity. Because of local fitting and
computing, moving-window kriging is also computationally efficient.
One caveat of the local-window approach is that there is no consistent
covariance function over the whole study domain. Higdon, Swall, and
Kern (1999) convolved spatially varying kernels to give a nonstationary
version of the squared exponential stationary covariance function.
This approach has been applied in modeling remote sensing images
(D'Hondt, López-Martínez, Ferro-Famil, & Pottier, 2007). Although this
method can produce a consistent covariance function over the whole

prediction domain, the Gaussian kernel applied in this method is too
smooth for real spatial processes.

Besides spatial nonstationarity, the problem of computational
burden also needs to be solved when applying geostatistical models
for dealing with large spatial data. The local-window approach
(e.g., moving-window kriging) is one way to solve the problem of
computational burden. Data dimension reduction is another way to re-
duce computational burden associated with large spatial data (Wikle,
2010). Cressie and Johannesson (2008) developed a spatial mixed
effects model (i.e., fixed rank kriging) with a flexible family of
nonstationary covariance functions. For this approach, kriging can be
done exactly, and the computational complexity is linear to the size of
the data. Moreover, Cressie et al. (2010) developed a spatial–temporal
random effect model (i.e., fixed rank filtering), which integrates fixed
rank kriging and Kalman filter for dealing with large spatial–temporal
data. Fixed rank kriging and fixed rank filtering are both approaches
of data dimension reduction. These methods eliminate or reduce some
components of spatial variability to improve computational efficiency.

In this work, we present a geostatistical inverse modeling approach
for merging coarse-resolution remote sensing images with variable
spatial supports. The geostatistical inverse model was designed to be
statistically principled, and it can produce the best predictions (i.e., min-
imizing the squared errors between predictions andmeasurements) and
prediction uncertainties, while honoring the original data (i.e., preserv-
ing the values of original measurements) (Kitanidis, 1995; Michalak,
Bruhwiler, & Tans, 2004). In the geostatistical inverse modeling frame-
work, the restricted maximum likelihood method was used for estimat-
ing covariance parameters related to the change-of-support problem.
Moreover, we contributed a moving-window geostatistical inverse
modeling approach to accommodate spatial nonstationarity and reduce
computational burden associated with large spatial data. Following the
introduction, we introduce the geostatistical inverse modeling method-
ology in Section 2. In Section 3, we illustrate the computer experiments
using synthetic and real images. The modeling results are presented in
Section 4. Finally, we discuss possiblemodel improvements and summa-
rize the major findings of this work.

2. Methodology

2.1. Geostatistical inverse modeling

Geostatistical inverse modeling (GIM) follows a Bayesian approach,
and it is based on the principle of combining the prior information
(i.e., spatial and/or temporal autocorrelation) with the information
from available measurements (Michalak, Bruhwiler & Tans, 2004). Spa-
tial and/or temporal autocorrelation can provide information about the
structure of the data that can be used to reduce prediction uncertainty.
GIM has been applied in ground water systems (Kitanidis, 1995), con-
taminant sources identification (Snodgrass & Kitanidis, 1997), estimat-
ing surface fluxes of atmospheric trace gases (Gourdji, Mueller,
Schaefer, & Michalak, 2008; Michalak, Bruhwiler & Tans, 2004), charac-
terizing attribute distributions in water sediments (Zhou & Michalak,
2009), and merging remote sensing images with variable resolutions
(Erickson & Michalak, 2006). There remain unrealized opportunities in
applying GIM for image scaling (i.e., downscaling and up-scaling) and
multi-resolution data fusion. In comparison with area-to-point kriging,
which also deals with predicting point values from areal data, the co-
variance parameters in the GIM framework can be inferred directly
from measurements by the restricted maximum likelihood algorithm.
Moreover, measurements with variable spatial supports can also be
merged to produce a single resolution image using GIM.

We only present the key equations of GIM here. Readers are referred
to Michalak et al. (2004) for an in-depth discussion about GIM. The
spatial prediction problem of GIM can be expressed as

z ¼ h s; rð Þ þ v ð1Þ
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