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Leaf area index (LAI) is one of the key parameters for the calculation of the energy budget, photosynthesis, and
the interception of precipitation in land-surface models at local to global scales. Estimation of LAI from satellite
data is a challenging and difficult problem. Studies over the past decades have focused predominantly on the
improvement of forward modeling of the radiative transfer problem and on the application of more realistic
numerical inversion schemes. Little or no attention has been paid to alternatives for the least squares method
as a statistical distance measure or cost function, used to minimize the distance between observations and
model predictions. The least-squares method has properties that assume noise with a Gaussian distribution
and zero mean, an assumption often violated when LAI is estimated from satellite reflectance data. Here, we
test the use of alternative statistical distance measures or cost functions to estimate LAI. We combine a look-up
table (LUT)-inversion method based on the FLIGHT radiative transfer model and test how well it estimates LAI
from MODIS reflectance data for a large set of alternative cost functions. We consider three classes of statistical
distance measures or cost functions: information divergence measures, M-estimates, and minimum contrast
methods. We estimate LAI from the Moderate Resolution Imaging Spectrometer (MODIS) surface reflectance
product (MOD09GA) for 11 VALERI and BigFoot sites around the globe. These sites consist of a wide range of
tree-cover types that include conifer, broadleaf andmixed (conifer, broadleaf, grassland) forest sites.We develop
LUTs with FLIGHT for conifer and broadleaf forests and we show that improvements can be obtained for the
estimation of LAI by choosing a cost function appropriate for a particular problem. Results show error reductions
of 20% compared with the MODIS LAI retrieval (MOD15A2).

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The one-sided leaf area index (LAI) is an important parameter in
agricultural, ecological, hydrological and land-surface models. LAI is
used to quantify key biophysical processes such as photosynthesis and
is used tomodel the exchange between the land and atmosphere of car-
bon dioxide, water, energy (latent and sensible heat) and momentum
(Bounoua et al., 2000; Doraiswamy et al., 2004; Potter et al., 1993;
Sellers et al., 1996). LAI depends on factors such as species composition,
developmental and phenological stage, prevailing site conditions,
environmental stresses, disturbance and management practices. LAI
changes rapidly at the start and end of the growing season and shows
variations from year to year dependent on variations in land manage-
ment, disturbance, precipitation and temperature.

There is considerable uncertainty in measuring LAI both from
the ground and from space (Baret & Buis, 2008; Gower, Kucharik,
& Norman, 1999; Kussner & Mosandl, 2000; Weiss, Baret, Smith,

Jonckheere, & Coppin, 2004). Moreover, the collection of ground-
based measurements of LAI is costly and time consuming. Satellite
based techniques provide a relatively cost-effective means to obtain
frequent updates of LAI estimates for large areas. The effective time res-
olution of global satellite based LAI estimates and associated biophysical
parameters is 8 days to a month and the spatial resolution is between 1
and 8 km (Gobron et al., 2005; Myneni et al., 2002).

Two common types of methods to estimate LAI from satellite data
are widely used. The first type estimates LAI from an empirical relation-
ship with a vegetation index (VI); the second uses a canopy radiative
transfer (RT)model to link LAI to reflectance values collected atmultiple
solar and view angles. The VI-based methods use simple empirical
relationships that vary with vegetation type (Los et al., 2000; Sellers
et al., 1996). Other factors such as spatial variations in soil background
reflectance are assumed dependent on land-cover type. The RT-based
inversions are more complex and put a high demand on computing
resources. The first canopy RT models were developed in the late
1970s and early 1980s (Kimes, Norman, & Walthall, 1985; Ross, 1981;
Verhoef, 1984). Further complexity and realism to these canopy reflec-
tance models or bidirectional reflectance factor (BRF) models was
added over the past three decades; a suite of recentmodels is compared
in Widlowski et al. (2007). LAI estimates based on inversion of RT
models require a priori assumptions about for example leaf optical
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properties, soil background reflectance and canopy structure to solve
what is in essence an underdetermined set of equations. These proper-
ties are commonly derived from land-cover maps or plant functional
type maps (Myneni et al., 2002). Hybrid methods are used as well;
these methods use either a RT-based inversion if sufficient observations
are available or a VI-based empirical relationship where observations
are few and a RT-based inversion solution cannot be determined
(Myneni et al., 2002).

A number of methods are used to invert RTmodels: conventional nu-
meric optimization methods (Jacquemoud et al., 2000), inversions based
on look up tables (LUTs; Combal et al., 2002; Darvishzadeh, Skidmore,
Schierf, & Atzberger, 2008; North, 2002; Richter, Atzberger, Vuolo,
Weihs, & D'Urso, 2009; Weiss, Baret, Myneni, Pragnere, & Knyazikhin,
2000), and methods based on machine learning such as neural networks
and support vectormachines (Atzberger, 2004; Bacour, Baret, Beal,Weiss,
& Pavageau, 2006; Danson & Rowland, 2003; Fang & Liang, 2003; Gong,
Wang, & Liang, 1999; Verrelst et al., 2012). While much research has
been carried out to improve RT models and inversion techniques, only
few studies exist that investigate the properties of the residual error
and how these affect LAI retrievals. In particular, little attention is paid
to the development of robust methods that perform well when errors
or residuals between models and data are non-linear, not normal or
asymmetrically distributed (Susaki, Hara, Kajiwara, & Honda, 2004).
Other statistical estimation methods used for parameter estimation
(but not necessarily biophysical parameter estimation) in large geophys-
ical data sets are found in the environmental literature. These
methods can be based on a hierarchical Bayesian approach; see for
example Cressie and Johannesson (2008) for references to further
work or can employ dimension reduction techniques and regularization
of inverse estimation problems (Ruiz-Medina & Espejo, 2012, 2013).

Finding appropriate metrics for non-linear parameter estimation is
essential in many statistical problems. Numerous diagnostic tests exist
in a wide variety of research areas to examine model residuals such as
independency, reversibility and other properties. The most commonly
used measures of dependence and test statistics are convenient func-
tions of correlation that are motivated by linear relations involving
Gaussian processes. These measures tend to fail when variables are
discrete, or when they face non-linear or non-Gaussian properties. In
particular, the residuals of RT models are likely to have non-linearities
and heterogeneities and therefore assumptions of Gaussian properties
underlying the use of least squares estimation (LSE) are violated.

RT models describe the interactions of solar radiation with the veg-
etation canopy based on physical laws and probabilities of light being
scattered, reflected and absorbed by optical elements in the canopy
(leafs, twigs, branches and stems), understory and soil and thus provide
a cause–effect relationship between scattering elements, their biochem-
ical constituents, structure and reflectance (Jacquemoud et al., 2009). RT
model inversions are based on the adjustment of input values of bio-
physical variables such as LAI, cover fraction, canopy shape, leaf area
distribution through the canopy and leaf angle distribution (Prieto-
Blanco, North, Barnsley, & Fox, 2009). The best match, usually in terms
of the least-squares criterion between simulated BRF and measured
BRF for various wave bands, leads to the most likely set of biophysical
parameters. The inverse problem can be solved only if it is well posed
(if a unique solution exists). In general the inverse problem is by nature
an ill-posed problem, i.e. a set of solutions can lead to the same BRF.
Measurement and model uncertainties will exacerbate this problem
(Atzberger, 2004). The measurement uncertainties come from the
noise associated with the sensor and the data processing required to
transform the sensor raw output signal into BRFs (atmospheric effects,
residual cloud effects and calibration errors; see e.g. Holben, 1986; Los
et al., 2000). The model uncertainties come from the type of canopy
architecture or the soil background reflectance assumed, and these
may not be consistent with the actual surface conditions. Furthermore,
the computation of the RT requires approximations yielding additional
uncertainties in the model simulations.

In a previous paper (Leonenko, North, & Los, 2013), it was explored
how the use of different cost functions, or statistical distance measures,
could improve the estimation of biophysical parameters from simulated
reflectancedata. Over 60 statistical distanceswere obtained from the lit-
erature; these distances can be divided in three classes: information
measures, M-estimates and minimum contrast approach. Numerical
results, based on both simulated LUTs and simulated observations,
showed that a number of distances measures work better than the
commonly used LSE. Here, we use the same approach to retrieve LAI
fromMODIS surface reflectance data (MOD09GA). The LUTwas derived
with FLIGHT (North, 1996; North, Rosette, Suarez, & Los, 2010). FLIGHT
simulates the scattering and absorption of solar radiation in vegetation
canopies. It is based on Monte Carlo simulations of photon transport
and it allows representation of complex vegetation structures as well
as angular geometry. FLIGHT has been compared with other three-
dimensional radiative transfer codes under the Radiative Transfer
Model Inter-comparison (RAMI) framework (Widlowski et al., 2007,
2008).

The retrievalmethod involves three steps: 1) construction of the LUT
(Prieto-Blanco et al., 2009), i.e. simulation of BRFs associated with a set
of solar and view zenith angle configurations, biophysical (leaf and can-
opy) parameters and soil background reflectance values 2)minimization
of the different cost functions betweenMODIS reflectance values and the
LUT and 3) comparing the estimated and ground-measured LAI. Cost
functions are evaluated in terms of how well the ground measured and
satellite estimated LAI agree.

The LUT based retrievals with different cost functions are evaluated
for awide range of land-cover types that included conifer, broadleaf and
mixed (conifer with broadleaf) forest sites (Section 2 and Appendix A).
The retrieved LAI was also compared with the MODIS LAI product
(MOD15A2).

The paper is organized as follows: In Section 2, the MODIS data and
ground data from 11 sites are discussed. In Section 3, an explanation of
the construction of the LUTs is provided. In Section 4, a brief summary of
alternative distances is given, and in Section 5, the alternative distances
are applied and the numerical results presented. Guidance for applica-
tion of the alternative distances and conclusions are presented in
Section 6. An evaluation of all cost functions in terms of estimating LAI
can be found in Appendix A.

2. Data description

2.1. MODIS data

MOD09 (MODIS Surface Reflectance; (Vermote et al., 1997)) is a
seven-band product computed from the MODIS Level 1B land bands 1
(620–670 nm), 2 (841–876 nm), 3 (459–479), 4 (545–565 nm), 5
(1230–1250 nm), 6 (1628–1652 nm), and 7 (2105–2155 nm). The
product corrects top-of-the-atmosphere reflectance for atmospheric
scattering and absorption and provides an estimate of the surface
spectral reflectance for each of the seven bands as measured at ground
level. We use the MOD09GA product, for the main part collected by the
Terra instrument. The spatial resolution of this MODIS product is 1 km.

We used the MOD15A2 level-4 MODIS global leaf area index (LAI)
product (Myneni et al., 2002). The temporal resolution of this product
is 8 days and the spatial resolution is 1 km; data are projected on a
Sinusoidal grid. The MODIS LAI estimation algorithm uses reflectance
values in up to 7 spectral bands. The product was developed jointly by
personnel at Boston University and the University of Montana under
contract with the National Aeronautic and Space Administration.

2.2. Forest sites

Ground data from 11 forests, collected at the BigFoot and VALERI
sites, were used to test the retrieval of LAI from MODIS reflectance
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