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Accurate mapping of both elevation and plant distributions in salt marshes is important for management and
conservation goals. Although light detection and ranging (LIDAR) is effective at measuring surface elevations,
laser penetration is limited in dense saltmarsh vegetation. In a previous study, we found that LIDAR-derived dig-
ital elevationmodel (DEM) error variedwith vegetation cover.We derived cover-class-specific correction factors
to reduce these errors, including separate corrections for three different height classes of Spartina alterniflora, the
dominantmacrophyte in southeastern U.S. saltmarshes. In order to apply these cover class-specific corrections, it
is necessary to have information on the distribution of cover classes in a LIDAR-derived DEM. Hyperspectral im-
agery has been shown to be suitable for the separation of salt marsh vegetation species by spectral signatures,
and can be used to determine cover classes; however, there is persistent confusion both among the different
height classes of S. alterniflora and betweenplants andmud (the Spartina problem). This paper presents amethod
to overcome the respective limitations of LIDAR and hyperspectral imagery through the use of multisensor data.
An initial classification of hyperspectral imagery based on the maximum likelihood classification algorithm was
used in a decision tree in combinationwith elevation and normalized difference vegetation index (NDVI) derived
from the hyperspectral imagery to map nine salt marsh cover classes. The decision tree appreciably reduced the
Spartina problem by reassigning classes using these ancillary data and resulted in a final overall classification
accuracy of 90%, with a quantity disagreement of 1% and an allocation disagreement of 9%. The resulting
hyperspectral image classification was then used as the basis for applying cover class-specific elevation correc-
tion factors to the LIDAR-derived DEM. Applying these correction factors greatly improved the accuracy of the
DEM: overall mean error decreased from 0.10 ± 0.12 (SD) to −0.003 ± 0.10 m, and root mean squared error
from 0.15 to 0.10 m. Our results suggest that the use of decision trees to combine elevation and spectral informa-
tion can aid both hyperspectral image classification and DEM elevation mapping.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Salt marshes are intertidal wetlands typically found in association
with estuaries in temperate coastal areas. Salt marshes are susceptible
to habitat loss due to changes in sea level and coastal flooding, and
there is growing interest in obtaining accurate elevation maps for
these areas in order to understand how small topographic differences
affect water flow, sediment distribution, and the extent and frequency
of tidal inundation (Gesch, 2009; Sanders, 2007). Salt marshes occupy
a narrow vertical range of less than ameter to 2 m and small differences
in elevation can alter flooding regimes. For example, in a Dutch salt
marsh a 4 cm elevation difference resulted in 15 to 20 minute changes
in the duration of tidal submergence (Scholten and Rozema, 1990).

Differences in elevation also affect plant distributions, as salt marsh
macrophytes exhibit characteristic patterns of vertical zonation: eleva-
tion differences of less than 10 cm have been shown to significantly
influence species patterns in marshes (Callaway et al., 1990; Silvestri,
Marani, & Marani, 2003; Suchrow and Jensen, 2010). In salt marshes
in the southeastern U.S., the height of Spartina alterniflora, the dominant
plant, is affected by elevation, with taller plants found growing in low
areas closest to the water's edge and medium and shorter plants at
higher elevations (Weigert & Freeman, 1990). A variety of other plants,
including Juncus roemerianus, Salicornia virginica,Batismaritima,Distichlis
spicata and Borrichia frutescens, are typically found in the highest parts of
the marsh. Gradients in elevation are also associated with a range of
changes in soil characteristics, including oxygen availability and redox
potential (Mitsch & Gosselink, 2000; Pezeshki, 2001), soil moisture and
porewater salinity (Adam, 1990), and concentrations of sulfides and
nutrients (Gallagher, 1975; Mendelssohn & Morris, 2000). Elevation
maps at the resolution that controls both flooding and vegetation pat-
terns are therefore important for understanding inundation patterns
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and for determining habitat characteristics of salt marshes (Adam, 1990;
Silvestri et al., 2003; Zedler et al., 1999).

Many coastal researchers use light detection and ranging (LIDAR) to
produce digital elevation models (DEMs) of salt marshes, as LIDAR
provides broad coverage for areas that are large and sometimes difficult
to access on the ground. However, there are several drawbacks to this
approach. First, LIDAR tends to overestimate salt marsh elevations due
to poor laser penetration of the dense canopy (Montane & Torres,
2006; Rosso, Ustin, & Hastings, 2006; Sadro, Gastil-Buhl, & Melack,
2007; Schmid, Hadley, &Wijekoon, 2011). The majority of prior studies
have focused on improving techniques to separate LIDAR returns
(Wang et al., 2009) and optimizing DEM interpolation methods
(Schmid et al., 2011; Toyra, Pietroniro, Hopkinson, & Kalbfleisch,
2003), both of which can help to reduce errors. These corrections have
been applied without taking plant species into account, and have had
vertical accuracies (mean error) ranging from −0.02 to 0.12 m. In a
previous study (Hladik & Alber, 2012), we found that LIDAR-derived
DEMmean error variedwith vegetation cover in salt marshes. Of partic-
ular importance was the finding that tall, medium, and short height
classes of S. alterniflora required significantly different correction
factors, ranging from 0.05 to 0.25 m. However, overall mean error
could be reduced to −0.01 m by applying cover-class-specific correc-
tion factors to four test areas (total area of 0.107 km2). Using these
correction factors requires information on the distribution of cover clas-
ses throughout the study area, which was not available in the earlier
study. A second, related limitation of topographic LIDAR is that it only
receives spectral information at one wavelength in the near infrared
(NIR). It therefore cannot be used to distinguish among plant species,
which requires information from the visible portion of the electromag-
netic spectrum (Campbell, 2006). It should be noted that bathymetric or
dual-band LIDAR systems are able tomeasure green, red and NIRwave-
lengths and have been successfully used to assess saltmarshes aswell as
other coastal habitats without visible imagery (see Collin, Long, &
Archambault, 2010, 2012 and references therein).

Hyperspectral imagery in the visible and NIR portion of the electro-
magnetic spectrum has been shown to be suitable for the separation of
saltmarsh vegetation species based on their spectral signatures (Artigas
& Yang, 2005; Schmidt & Skidmore, 2003). Hyperspectral sensors are
ideal for this purpose as they are able to collect a high number of contig-
uous spectral bands (sometimes greater than 200 bands) with narrow
bandwidths and at a fine spatial resolution. Hyperspectral imagery has
been used extensively in salt marshes to map vegetation patterns
(Belluco et al., 2006; Hirano, Madden, & Welch, 2003; Silvestri et al.,
2003; Wang, Menenti, Stoll, Belluco, & Marani, 2007), monitor invasive
species (Gilmore et al., 2008; Rosso et al., 2006), document erosion and
vegetation succession (Thomson,Huiskes, Cox,Wadsworth, & Boorman,
2004), measure biomass and species abundance (Lucas & Carter, 2008;
Wang et al., 2007) and detect vegetation change (Klemas, 2011),
among other applications.

There are several challenges in using hyperspectral imagery in salt
marshes, particularly with respect to accurately classifying Spartina
species. First, the different height classes of S. alterniflora (short,
medium and tall), which represent user-defined classes along a height
continuum, are commonly confused in hyperspectral imagery classifica-
tions due to their spectral similarity in both the visible and NIR portions
of the spectrum (Artigas & Yang, 2005; Schmidt & Skidmore, 2003).
Another source of error results from mixed pixels that include either
more than one class of vegetation and/or mud. Both of these complica-
tions are observedwith S. alterniflora: the different height classes can be
found adjacent to one another, and S. alterniflora's erect structure and
often sparse densitymean that mud is spectrallymixedwith vegetation
(Belluco et al., 2006; Silvestri et al., 2003; Thomson et al., 2003). Silvestri
et al. (2003) found that S. maritima is often misclassified because
it is found in low-lying areas where mud and water interfere with
its spectral signature. Thomson et al. (2003) hypothesized that
microphytobenthos on mud may also cause mud to resemble Spartina

spectrally. The inability to accurately classify the three height classes
of S. alterniflora, compounded by the presence of mud in mixed pixels,
is what we term the Spartina problem. A solution to the Spartina prob-
lem is especially important for ecological studies as the S. alterniflora
height classes can have significantly different biomass and productivity
values (Morris & Haskin, 1990; Schalles et al., 2013; Turner, 1979).

One way to potentially overcome the individual limitations of
LIDAR-derived DEMs and hyperspectral imagery, and to potentially
address the Spartina problem, is through the use of multisensor data.
Multisensor data integration combines data from different sources to
improve classification performance and can include spectral, texture
and/or ancillary data such as DEMs (Lu & Weng, 2007; Pohl & van
Genderen, 1998). LIDAR-derived DEMs have been included as a compo-
nent band with multispectral and hyperspectral imagery to classify
coastal habitats (Chust, Galparsoro, Borja, Franco, & Uriarte, 2008;
Sadro et al., 2007; Yang & Artigas, 2010) and as data layers in object-
orientated classifications of salt marsh habitats (Brennan & Webster,
2006; Gilmore et al., 2008), resulting in improved classification accura-
cies. LIDAR-derived DEMs have also been combined with land cover
classifications post hoc to refine and improve classification products
for urban areas (Lu & Weng, 2004; Pal & Mather, 2003), to extract salt
marsh species elevation ranges and distributions (Morris et al., 2005;
Sadro et al., 2007), monitor the spread of invasive species (Rosso et al.,
2006), model species habitat (Moeslund, Arge, Bocher, Nygaard, &
Svenning, 2011; Sellars & Jolls, 2007), and predict the effects of sea
level rise (Webster, Forbes, MacKinnon, & Roberts, 2006). The above
studies have all used multisensor data for classification purposes or for
extracting additional elevation information. However, none have used
elevation data to refine their existing classification of salt marshes.

This paper describes our approach for combining hyperspectral
imagery of the salt marshes surrounding Sapelo Island, GA with a
LIDAR-derived DEM through a decision tree. A decision tree is a non-
parametric multistage or hierarchical classifier that can be applied to a
single image or multiple co-registered images (Breiman, Feidman,
Olshen, & Stone, 1984). Using a multistage approach, a decision tree
breaks down a complex decision into a series of nodes, or branches,
where binary decisions are made to sequentially subdivide the data
into predetermined classes. Data sources that can be used in decision
trees include classified images, DEMs and vegetation indices. Although
Pal and Mather (2003) found that decision trees performed poorly
with high-dimensional hyperspectral data, we used a classified map
(single band) as an input rather than the entire hyperspectral data set.
Our workflowwas: (1) to use hyperspectral imagery to initially classify
nine salt marsh cover classes; (2) to improve vegetation classification
accuracy and address the Spartina problem by incorporating elevation
information and the normalized difference vegetation index through a
decision tree; and (3) to combine the final vegetation classification
with a LIDAR-derived DEM to produce corrected DEM elevations. The
method we outline produced both an accurate habitat classification
and DEM for the study area. This approach will be of specific use to
those interested in developing accurate maps of salt marshes, but will
also be more broadly applicable as a demonstration of the combined
power of LIDAR and hyperspectral imagery through the iterative use
of multisensor data.

2. Methods

2.1. Study site

This study included a total of 13.82 km2 of salt marsh habitat in and
around the Duplin River, a 13-km long tidal inlet that flows into Doboy
Sound and forms the western boundary of Sapelo Island, Georgia, USA
(UTM Zone 17 N, 471480 E 3473972 N, Fig. 1). The site is located in
the Georgia Coastal Ecosystems Long Term Ecological Research domain
and the Sapelo Island National Estuarine Research Reserve. The inlet is
surrounded by a complex of salt marshes, tidal creeks and back barrier
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