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Accurate Digital TerrainModels (DTMs) are inevitable inputs for mapping and analyzing areas subject to natural
hazards. Topographic airborne laser scanning has become an established technique to characterize the Earth's
surface: lidar provides 3D point clouds allowing for a fine reconstruction of the topography while preserving
high frequencies of the relief. For flood hazard modeling, the key step, before going onto terrain modeling, is
the discrimination of land andwater areaswithin the deliveredpoint clouds. Therefore, instantaneous shorelines,
river banks, and inland waters can be extracted as a basis for more reliable DTM generation. This paper presents
an automatic, efficient, and versatile workflow for land/water classification of airborne topographic lidar points,
effective at large scales (N300 km2). For that purpose, the Support Vector Machine (SVM) method is used as a
classification framework and it is embedded in a workflow designed for our specific goal. First, a restricted but
carefully designed set of features, based only on 3D lidar point coordinates and flightline information, is defined
as classifier input. Then, the SVM learning step is performed on small but well-targeted areas thanks to a semi-
automatic region growing strategy. Finally, label probability output by SVM is merged with contextual knowl-
edge during a probabilistic relaxation step in order to remove pixel-wise misclassification. Results show that a
survey of hundreds of millions of points are labeled with high accuracy (N95% in most cases for coastal areas,
and N90% for rivers) and that small natural and anthropic features of interest are still well classified even though
wework at low point densities (0.5–4 pts/m2).We also noticed that it may fail in water-logged areas. Neverthe-
less, our approach remains valid for regional and national mapping purposes, coasts and rivers, and provides a
strong basis for further discrimination of land-cover classes and coastal habitats.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Seashore and river monitoring

Global climate change is said to lead to an increase in the sea level in
the forthcoming years. Coastal areas are particularly at risk, mainly be-
cause almost 50% of the Earth's population lives in such areas. Numer-
ous thematic maps and Geographical Information Systems have been
developed to meet management and forecasting needs on these areas
subject to flooding. In addition, other legal requirements have emerged.
For instance, the European Water and Flood Framework Directives
(2000–2007) influenced strategies in Europe for establishing preven-
tion and protection policies by imposing repeated nation-wide surveil-
lance of all kinds of inland water reservoirs, rivers, and large catchment

basins. Therefore, these issues are no longer consideredmerely at a local
or a regional level. A local scale analysis may be sufficient for providing
specific vulnerability documents or leading studies on chosen objects
but not for assessing the socio-economic impact of natural hazards
and in order to efficiently implement the appropriate policies. However,
the accurate topography of areas with high human, economic or envi-
ronmental stakes, and those subject to such hazards, has barely been
described.

The characterization and quantification of coastal and river habitats
have been improved over the last decades due to synergistic remote
sensing techniques, that are able to deliver high-resolution spatio-
temporal by-products (Yang, 2008). In addition, in order to provide
some initial maps, remote sensing is also essential for monitoring and
analyzing the evolution of themeasured physical characteristics. Repet-
itive measuring is also crucial for areas undergoing most changes
i.e.:flooding, erosion, accretion or retreating suchas beaches, cliffs or un-
stable slopes (Addo, Walkden, & Mills, 2008; Miller et al., 2008; Revell,
Komar, & Sallenger, 2002; White & Wang, 2003). Moreover, up-to-
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date information is necessary for building setback lines, estimating
beach width (Rango et al., 2000), making an inventory of wetlands
and agricultural land resources, and delineating flood and hurricane
hazard areas, so as to estimate sediment transport volumes or alter-
ations in intertidal habitat (Chust, Galparsoro, Borja, Franco, & Uriarte,
2008).

Using low or medium size resolution optical data or Synthetic
Aperture Radar data allows for a quick and cost-effective way to ob-
tain a landscape-level overview of coastline changes (Pardo-Pascual,
Almonacid-Caballer, Ruiz, & Palomar-Vázquez, 2012; Ryu, Won, & Min,
2002; Yu & Acton, 2004), and helps to identify areas concerned that
will require a more in-depth study. For this purpose, the small-
footprint airborne lidar technology appears to be attractive because it
provides fine scale seamless coastal Digital Terrain Models (DTMs)
over a large coverage area. It allows to survey hundreds of kilometers
of shoreline and rivers with a high spatial resolution within a few days
only. Its very high vertical accuracy (b0.15 m) has opened up new pos-
sibilities of tackling very precise and specific problems, thatwere impos-
sible to deal with before (Collin, Long, & Archambault, 2012; Hladik &
Alber, 2012; Saye, van der Wal, & Pye, 2005; Young & Ashford, 2006),
which is true even for country-based purposes (Mandlburger, Hauer,
Hofle, Habersack, & Pfeifer, 2009), such as proper management of
water defenses (Pe'eri & Long, 2011). In addition, lidar swath widths of
a few hundred meters are ideal for coastal, river, and even tidal channel
monitoring. The offshore ocean surface, subaerial beach areas and the
backbeach, or river channels and their banks, can be mapped simulta-
neously (Irish & Lillycrop, 1999; Shrestha, Carter, Sartori, Luzum, &
Slatton, 2005; Yates, Guza, Gutierrez, & Seymour, 2008). Moreover,
repetitive lidar surveys allow to analyze coastal and dune development
(Richter, Faust, & Maas, 2011; Thoma, Gupta, Bauer, & Kirchoff, 2005).
In the specific case of shoreline mapping, lidar data only need to be
acquired when the water level is below a specified level, which makes
the method less stringent than airborne imagery (Parrish, 2012).

1.2. Motivation: towards automatic coastal lidar DTM generation

In France, in addition to the EuropeanWater and FloodingDirectives,
the National Institute of Geographic and Forest Information (IGN) and
the Marine Hydrographic and Oceanographic Service of the Defence
Ministry have initiated a national program, started in 2005, that aims
to create a three-dimensional model of the French coastline. It is called
Litto3D® (Pastol, 2011). Lidar is currently used to produce a continuous
land–sea representation of the coast, allowing for accurate manual
shoreline mapping.

Generating DTMs in coastal and river areas first requires to classify
water areas in order to accurately extract the instantaneous shoreline1.
Consequently, the aim of this paper is to propose a workflow for
water/land classification in topographic lidar datasets that is efficient
at large scales and is adaptive to various landscapes (rivers and
seashores). Very high classification accuracies (N90%) are targeted
since such coast delineation forms the basis of improving political
decision-making in high-staked areas. In addition, this should allow for
seashore delimitation with a horizontal accuracy less than 2 m, which
is a significant improvement with respect to the existing historical
coastline (HCL). HCL is available for the whole French territory, and is
the geographical reference for sea and land delineation. HCL is a 2D
polyline generated at a scale of 1:15,000, with a planimetric accuracy
of 10 m, corresponding to the highest water mark for an astronomical
tide of coefficient 120 in normal weather conditions.

1.3. Related works on water detection from lidar data

We focus on airborne topographic lidar data that operates on thenear-
infrared channel (NIR, 1064 nm wavelength). Multi-spectral analysis
coupling green and NIR wavelengths is excluded (Mallet & Bretar, 2009).

To the best of our knowledge, there is an abundant literature on
shoreline extraction from Digital Terrain Models but only few papers
exists about water detection in river and coastal areas from raw lidar
topographic data. The simplest methods directly determine the
water/land interface using either a Digital Surface Model (DSM) or a
Triangular Irregular Network (TIN) computed from a 3D point cloud.
Water areas are delineated as a junction of a given water level, water
surface elevation or more simply by the 0 m line (Liu, Sherman, &
Gu, 2007; Roberston, Whitman, Zhang, & Leatherman, 2004; White,
Parrish, Calder, Pe'eri, & Rzhanov, 2011). Such a model-driven strategy
is focused on land/water interface delimitation and is not adapted to
inland waters, and can only be performed consecutively to a correct
DTM generation step that efficiently deals with varying tidal conditions
(Yates et al., 2008).

Water detection methods from lidar point clouds are divided into
two main approaches. First, segmentation of water areas can be based
on pattern recognition techniques. Features of interest can be breaklines
(Brzank, Lohmann, & Heipke, 2005b), tidal channels (Lin, Yan, & Tong,
2008; Mason, Scott, & Wang, 2006) or gullies (Baruch & Filin, 2011). A
scan line segmentation method is performed and water classification
accuracies between 91 and 99% have been obtained, depending on the
landscape. Nevertheless, the approach is based on the detection of ver-
tical high frequencies of the relief. This means that planimetric lidar
point distribution should be sufficiently regular and water areas are lo-
cated in trenches and gullies. Such an assumption is efficient for specific
habitats and areas but cannot be generalized to other kinds of land-
scapes. Conversely, Höfle, Vetter, Pfeifer, Mandlburger, and Stötter
(2009) looked for atypically large triangles in a TIN, which are a strong
hint about the presence of water. Indeed, the reflection properties of
water surface for NIR lidar beams are characterized by either significant
absorption or specular reflection resulting in numerous non-recorded
laser echoes (unless there is excessive scatter due to water turbidity
or close bottom features).

Secondly, more general classifiers can be adopted to discriminate
water points from 3D lidar data. Since merely height information is in-
sufficient, additional information was inserted, namely lidar intensity
and point density. Brzank, Heipke, Goepfert, and Soergel (2008) used
both features in a fuzzy logical classifier. The method performs well
for water/mudflat discrimination (89–99%) for various lidar point den-
sities but necessitates a preliminary object based analysis, based on the
scan-line method developed by Brzank, Lohmann, and Heipke (2005a).
The authors also noted that calibration/correction steps should be car-
ried out to normalize the intensity feature. Even when such steps
were performed, with a rule-based approach, Höfle et al. (2009) noted
poor discrimination between asphalt and water surface. An overall ac-
curacy of 95%was obtained but it requires the knowledge of the position
of the sensor, GPS timestamps and scan angle to model lidar drop-outs.
In addition, such an approach cannot be adopted since no procedure
correcting the influence of soil moisture and water depth exists. To
deal with such issues, the RGB channels of an orthoimage were inserted
into an unsupervisedMean-Shift classifier (Lee,Wu, & Li, 2012). The ap-
proach is limited since the timing of optical data acquisition is critical
and difficult to obtain over large scales. More advanced lidar geometri-
cal features were proposed by Schmidt, Rottensteiner, and Soergel
(2013), coupled with full-waveform attributes, which allowed to dis-
card optical imagery. To cope with the local analysis of existing ap-
proaches, the authors adopted conditional random fields in order to
introduce contextual knowledge and improve classification. In addition,
other land categories (mudflat andmussel bed) were discriminated too
(Schmidt, Rottensteiner, & Soergel, 2012). Very satisfactory water de-
tection results were obtained (90–98%). Nevertheless, the approach is1 The term “shoreline” will be used here to refer to the land–water interface.
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