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Improving regional estimates of actual evapotranspiration (λΕ) in water-limited regions located at climatic
transition zones is critical. This study assesses an λΕ model (PT-JPL model) based on downscaling potential
evapotranspiration according to multiple stresses at daily time-scale in two of these regions using MSG–SEVIRI
(surface temperature and albedo) and MODIS products (NDVI, LAI and fPAR). An open woody savanna in the
Sahel (Mali) and a Mediterranean grassland (Spain) were selected as test sites with Eddy Covariance data
used for evaluation. The PT-JPL model was modified to run at a daily time step and the outputs from eight
algorithms differing in the input variables and also in the formulation of the biophysical constraints (stresses)
were compared with the λΕ from the Eddy Covariance. Model outputs were also compared with other modeling
studies at similar global dryland ecosystems.
The novelty of this paper is the computation of a key model parameter, the soil moisture constraint, relying on
the concept of apparent thermal inertia (fSM-ATI) computed with surface temperature and albedo observations.
Our results showed that fSM-ATI from both in-situ and satellite data produced satisfactory results for λΕ at
the Sahelian savanna, comparable to parameterizations using field-measured Soil Water Content (SWC)
with r2 greater than 0.80. In the Mediterranean grasslands however, with much lower daily λE values,
model results were not as good as in the Sahel (r2=0.57–0.31) but still better than reported values from
more complex models applied at the site such as the Two Source Model (TSM) or the Penman–Monteith
Leuning model (PML).
PT-JPL-dailymodelwith a soilmoisture constraint based on apparent thermal inertia, fSM-ATI offers great potential
for regionalization as no field-calibrations are required andwater vapor deficit estimates, required in the original
version, are not necessary, being air temperature and the available energy (Rn-G) the only input variables
required, apart from routinely available satellite products.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Evapotranspiration (or latent heat flux expressed in energy terms,
λE) represents 90% of the annual precipitation in water-limited regions
which cover 40% of the Earth's surface (Glenn et al., 2007). In these
regions there is a close link between carbon and water cycles
(Baldocchi, 2008) where water availability is themain control for biolog-
ical activity (Brogaard et al., 2005). λE rates also determine groundwater
recharge (Huxman et al., 2005) and feedbacks to continental precipita-
tion patterns (Huntington, 2006). The Sahel and the Mediterranean
basin are both located in transitional climate regions and are thus

expected to be extremely sensitive to climate change (Giorgi & Lionello,
2008). The land surface is a strong amplifier on the inter-annual
variability of the West African Monsoon leading to the observed
persistency patterns (Nicholson, 2000; Taylor et al., 2011; Timouk et
al., 2009). Therefore, improving estimates of temporal and spatial
variations of λE is crucial for understanding land surface–atmosphere
interactions and to improve hydrological and agricultural management
(Yuan et al., 2010).

λE can be estimated at regional scales using remote sensing data.
One way is to use models based on the bulk resistance equation for
heat transfer (Brutsaert, 1982), relying on the difference between
surface temperature (Ts) and air temperature (Ta) and the aerodynamic
resistance to turbulent heat transport. In this case, λE is estimated indi-
rectly as a residual of the surface energy balance equation (Anderson et
al., 2007; Chehbouni et al., 1997). This approach circumvents the problem
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of estimating soil and canopy surface resistances to water vapor, needed
to compute λE, that tend to be more critical in λEmodeling than aerody-
namic resistances in dryland regions (Verhoef, 1998; Were et al., 2007).
In those regions, two-source models treating the land surface as a
composite of soil and vegetation elements with different temperatures,
fluxes, and atmospheric coupling provide better results than
single-source models (Anderson et al., 2007). However, despite the
strong physical basis of two-source models (Kustas & Norman, 1999;
Norman et al., 1995) their spatialization is difficult because the task of
estimating aerodynamic resistances at instantaneous time scales is not
trivial, requiring knowledge about atmospheric stability, several vege-
tation and soil parameters as well as meteorological data (Fisher et al.,
2008). Further complications arise from the partition of Ts between
soil and vegetation (Kustas & Norman, 1999) because the radiative
surface temperature differs from the aerodynamic surface temperature
especially over sparsely vegetated surfaces (Chehbouni et al., 1997).

A second group of models using remote sensing data directly
solves the λE term using the Penman–Monteith (PM) combination
equation. In this case, λE can be partitioned into soil and vegetation
components (Leuning et al., 2008). With this approach, the challenge
is to characterize the spatial and temporal variation in surface conduc-
tances to water vapor without using field calibration (Zhang et al.,
2010). A simple way to estimate surface conductances is to use pre-
scribed sets of parameters based on biome-type maps (Zhang et al.,
2010). Other approaches perform optimization with field data but can
lead to a lack of estimates over vast regions of the globe, such as the
Sahel, due to the scarcity of field measurements (Yuan et al., 2010).
One of the first attempts to characterize surface conductance without
optimization proposed an empirical relationship with LAI derived
from MODIS (Moderate Resolution Imaging Spectroradiometer)
(Cleugh et al., 2007). Mu et al. (2007, 2011) refined this approach
using the empirical multiplicative model proposed by (Jarvis, 1976)
estimating moisture and temperature constraints on stomatal conduc-
tance and upscaling leaf stomatal conductance to canopy. Alternatively,
Leuning et al. (2008) used a biophysical model for surface conductance
based on Kelliher et al. (1995) method. However, this method required
optimization with field data for gsx, the maximum stomatal conductance
of leaves, and for the soil water content. As both parameters were held
constant along the year λE was overestimated at drier sites. To address
this shortcoming, Zhang et al. (2008) introduced a variable-soil moisture
fraction dependent on rainfall, and optimized gsx using outputs from an
annual water balance model or a Budyko-type model (Zhang et al.,
2008, 2010). Although this represented a step-forward for operational
applications, results at dry sites were still poorer than at more humid
sites (Zhang et al., 2008, 2010).

A solution to overcome those parameterization problems using
the Penman–Monteith equation, was the simplification proposed by
Priestley and Taylor (1972) (PT) for equilibrium evapotranspiration
over large regions by replacing the surface and aerodynamic resis-
tance terms with an empirical multiplier αPT (Zhang et al., 2009).
The PT equation is theoretically less accurate than PM although uncer-
tainties in parameter estimation using PM can result in higher errors
(Fisher et al., 2008). Fisher et al. (2008) proposed a model based on
PT to estimate monthly actual λE. The authors used biophysical con-
straints to reduce λE from amaximum potential value, λEp, in response
to multiple stresses. One advantage of this approach is that it does not
require information regarding biome-type or calibration with field
data. The modeling framework can be seen as conceptually similar to
the so-called Production Efficiency Models (PEM) for estimating GPP
(Gross Primary Productivity) (Houborg et al., 2009; Monteith, 1972;
Potter et al., 1993; Verstraeten et al., 2006a) where maximum light
use efficiency (ε) of conversion of absorbed energy fAPAR into carbon is
reduced below its maximum potential due to environmental stresses.
In fact, part of the formulation from the PT-JPL model has been intro-
duced into some PEM models (Yuan et al., 2010). The main model as-
sumption is that plants optimize their capacity for energy acquisition

in a way that changes in parallel with the physiological capacity for
transpiration (Fisher et al., 2008; Nemani & Running, 1989). This idea
is to some extent related to the hydrological equilibrium hypothesis
stating that in water-limited natural systems, plants adjust canopy de-
velopment to minimize water losses and maximize carbon gains
(Eagleson, 1986) but applied over shorter time-scales. The modeling
approach described above neglects the behavior of individual leaves
and considers the canopy response to its environment in bulk for
which it can be referred to as a top–down approach (Houborg et al.,
2009). Top–down approaches use simpler scaling rules compared to
bottom–up models that require detailed mechanistic descriptions
of leaf-level processes up-scaled to the canopy (Schymanski et al.,
2009). Although top–down approaches require less parameters than
bottom–up approaches, they are subjected to a higher degree of empir-
icism with high uncertainty on the functional responses of ecosystem
processes to environmental stresses (Yuan et al., 2010).

The use of global satellite vegetation products and meteorological
gridded databases as input to top–down approaches based on the PM
or the PT equations has made possible to obtain regional estimates of
evapotranspiration (Mu et al., 2007). However, there are still limitations
regarding the use of such databases. One hand, existing global climatic
data sets interpolated from observations such as the Climatic Research
Unit data set (CRU, University of East Anglia) are available on amonthly
but not a daily basis (New et al., 2000). Moreover, data from reanalyses
such as ECMWF (European Centre for Medium-Range Weather fore-
casts) or NCEP/NCAR present coarse spatial resolutions (≈1.25°) (Mu
et al., 2007) being desirable to minimize the use of climatic data when
possible.

On the other hand, PM and PT satellite-based approaches have taken
advantage of optical remote sensing data to estimate vegetation proper-
ties but thermal remotely sensed data has been used onlymarginally and
with coarse spatial resolution data such as the microwave AMSR-E at
0.25° (Miralles et al., 2011). Incorporation of longwave infrared thermal
data at spatial resolutions of 1–3 km available from the MODIS
(Moderate Resolution Imaging Spectroradiometer) or the SEVIRI
(Spinning Enhanced Visible and Infrared Imager) sensors could help
to track changes in surface conductance (Berni et al., 2009; Boegh et
al., 2002), soil evaporation (Qiu et al., 2006), surface water deficit
(Boulet et al., 2007; Moran et al., 1994) or soil water content (Gillies &
Carlson, 1995; Nishida et al., 2003; Sandholt et al., 2002). In relation
to soil moisture a promising approach is the mapping of soil moisture
based on soil thermal inertia (Cai et al., 2007; Sobrino et al., 1998;
Verstraeten et al., 2006b), following the early work of Price (1977)
and Cracknell and Xue (1996).

The objective of this work was to adapt and evaluate a daily version
of the PT-JPL model and introduce a new formulation for soil moisture
based on the thermal inertia concept. The aim is to minimize the need
for climatic reanalyses data by incorporating thermal remote sensing
information in order to facilitate future model regionalization. The
PT-JPL model in its original formulation has proven to be successful
over 36 Fluxnet sites at monthly time scales, ranging from boreal to
temperate and tropical ecosystems. However, none of those included
semiarid vegetation with annual rainfall below 400 mm (Fisher et al.,
2008, 2009). Model performance using in-situ and satellite data was
compared with field data from Eddy Covariance systems at two semiarid
sites: an open woody savannah in the Sahel (Mali) and Mediterranean
tussock grassland (Spain). Finally, to place the results in the context of
global drylands, model results were compared to published results from
similar models using remote sensing at dryland savanna and grasslands
sites across the globe.

2. Field sites and data

Two field sites (Fig. 1) have been used to test the model in semiarid
conditions: an open woody savannah in Mali and tussock grassland in
Spain. A general description of the sites is included in Table 1.
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