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Land surface temperature (LST) is a central parameter for surface urban heat island (SUHI) studies, in which
thermal remote sensing plays a key role. Traditionally, normalized difference vegetation index (NDVI), per-
cent green vegetation (%GV), and percent impervious surface area (%ISA), have been widely applied to exam-
ine the impacts of land cover compositions on SUHI. Urban thermal pattern, however, is a complicated
physical phenomenon involving a series of environmental factors, and it is insufficient to employ only one
indicator for the explanation of the SUHI phenomenon. Therefore, considering different thermal properties
of various land cover compositions, this study proposed a two-step physically based method, the spectral
unmixing and thermal mixing (SUTM) model, to examine the impacts of typical land cover compositions
on urban thermal pattern. The performance of SUTM was compared with those of linear and non-linear
(quadratic) regression models with NDVI, %GV, and %ISA as individual independent variables. Results indicate
that SUTM outperforms all regression models, with the lowest root mean square error (2.89 K) and mean
absolute error (2.11 K). Moreover, when the accuracy was assessed at five interval levels of percent impervious
surface area, it indicates that SUTM performs consistently well in both rural and urban areas. Comparatively,
NDVI and %GV-based regression models perform well in rural areas, but poor in urban areas, whereas
%ISA-based models perform well in urban areas, but relatively poor in rural areas. This study found that soil,
including both moist and dry soil, has significant impacts on modeling SUHI.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Due to rapid population growth and migration, urbanization has
taken place globally at an unprecedented rate, and it is likely to con-
tinue in upcoming several decades according to the most recent anal-
ysis and projections in the United Nations report (2012). During the
process of urbanization, a direct environmental consequence is the
modification of land surfaces. A large amount of natural lands have
been, or will be, converted to various developed lands (e.g. commer-
cial, industrial, transportation, and residential lands), within which
impervious surfaces are a major composition. Subsequently, this con-
version results in the alteration of physical properties of land surfaces,
including soil moisture, material heat capacity, conductivity, albedo,
and emissivity, etc., which leads to the decrease of evapotranspiration
(Chudnovsky et al., 2004; Friedl, 2002; Shoshany et al., 1994). As a
result, one of the most significant environmental impacts is the change
of urban land surface temperature (LST) and atmospheric temperature,
which significantly affects urban internal microclimatology, surface
energy change, anthropogenic heat discharge, building energy con-
sumption, atmospheric pollution, and human thermal comfort (Lu &
Weng, 2006; Sarrat et al., 2006; Voogt & Oke, 2003). When observed

at a large geographical scale, such urban–rural surface temperature
variation is well known as the surface urban heat island (SUHI)
phenomenon, and has been extensively documented in a number of
studies based on a variety of remote sensing platforms and sensors
since the 1970s (Chandler, 1976; Oke, 1982; Quattrochi & Goel, 1995;
Quattrochi & Luvall, 1999).

Among existing studies, twomajor categories ofmethods have been
developed to examine UHI phenomenon. The first category involves
the simulation of UHI phenomenon and its spatial pattern using
governing equations for fluid mechanics or atmosphere (e.g. energy
balance equation, etc.) with in-situ measurements or laboratory exper-
imental data. Major simulation models include energy balance models
(Oke et al., 1999; Tong et al., 2005) and dynamic numerical simulation
methods (Cendese & Monti, 2003; Saitoh et al., 1996; Tominaga et al.,
2008). Models under the second category quantitatively examine the
relationships between LST and spectral indicators generated from
remotely sensed data. Linear regression models have been widely
adopted to explore the empirical relationships between LST and various
metrics of socio-economic or biophysical factors, such as population
density and distribution (Weng et al., 2006; Xiao et al., 2008), intensity
of human activity (Elvidge et al., 1997), geometry of street canyon
(Bottyán & Unger, 2003; Eliasson, 1996), land use and land cover
(LULC) type and change (Amiri et al., 2009; Li et al., 2009), normalized
difference vegetation index (NDVI) (Carlson et al., 1994; Gallo et al.,
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1995), vegetation abundance (Weng et al., 2004, 2011), impervious
surface abundance (Imhoff et al., 2010; Yuan & Bauer, 2007), and land-
scape metrics (Li et al., 2011; Zhou et al., 2011), etc. On the other hand,
nonlinear statistical models have also been employed to characterize
the intensity and magnitude of UHI. Such models include Gaussian
model (Streutker, 2002, 2003), nonparametric kernel convolution
model (Rajasekar & Weng, 2009a, 2009b; Weng et al., 2011), and asso-
ciation rule mining technique (Rajasekar & Weng, 2009c).

Currently, although many spectral indices have been extracted
from remotely sensed data for analyzing UHI phenomenon, they are
still insufficient to fully characterize urban thermal characteristics
and patterns (Weng et al., 2004). One reason could be that, although
an individual spectral index is able to quantify certain characteristics
of land surface property, a comprehensive characterization is still
of great necessity because of the variety of thermal properties asso-
ciated with different urban biophysical compositions (Friedl, 2002).
In particular, Roberts et al. (2012) pointed out that the background
substrates of vegetation could impact the urban LST. In their research,
with similar vegetation cover, pixels with significantly different LSTs
were discerned due probably to different background substrates
(e.g. moist or dry soil) that having apparently different thermal prop-
erties. In other words, although a variety of aforementioned spectral
metrics are argued to have potentials to characterize urban LST char-
acteristics, these methods hardly consider the impacts of soil, which,
however, is regarded as one of the most important land compositions
in urban and suburban regions (Ridd, 1995). Therefore, it is necessary
to perform a comprehensive examination on the impacts of urban
biophysical compositions on UHI effects, with which the impacts
from thermal properties of different urban biophysical compositions
and their fractional land covers are taken into consideration (Friedl,
2002). In an attempt to solve this problem, we proposed a physically
based method, the spectral unmixing and thermal mixing (SUTM)
model, to examine the interplay between urban LST and various
land cover compositions. Specifically, the first step of this model is
to estimate subpixel land cover abundance through a fully con-
strained spectral mixture analysis (SMA) technique. Then the urban
thermal pattern is modeled as a mixture of thermal characteristics
of land cover components weighted by their respective abundances.
The resultant LST estimates were then compared with those derived
by linear and nonlinear regression models with NDVI, percent green
vegetation (%GV), and percent impervious surface area (%ISA),
respectively.

The remainder of this paper is organized as follows. The next section
introduces the study area and data. Section 3 describes the methods
employed for retrieving LST from Landsat Enhanced Thematic Mapper
Plus (ETM+) imagery. Further, Section 4 re-examines the relationship
between LST and land surface characteristics, and argues the necessity
of incorporating the impacts of moist and dry soil into modeling
LST. The development of the proposed SUTM model is detailed in
Section 5, and its accuracy assessment and comparative analysis are
described in Section 6. Results of SUTM and comparative analyses are
reported in Section 7. Finally, discussion and conclusions are provided
in Sections 8 and 9, respectively.

2. Study area and data

Four counties in Wisconsin, USA, including Washington, Ozaukee,
Milwaukee and Waukesha, were selected as the study area (see
Fig. 1). Located in Southeast Wisconsin, these four counties cover a
land area of 3784 km2 and have a population about 1.6 million (U.S.
Census Bureau, 2010). According to the surveys of Southeastern
Wisconsin Regional Planning Commission (SEWRPC) and US Census
Bureau, the average growth rates of population and household num-
ber have reached approximately 3.5% and 7% since 1980 (SEWRPC,
2010; U.S. Census Bureau, 2010). This trend of development is be-
lieved to continue in upcoming several decades based on the analysis

and projection with historic socio-economic data (SEWRPC, 2004a,
2004b). The most recent SEWRPC land use data shows that there
are a variety of land uses within these four counties, including residen-
tial, commercial, civic (e.g. government services, hospital and educa-
tional institutes, etc.), transportation, industrial, agricultural, water,
and other rural open lands, such as wetland, woodland, barren land,
etc. (SEWRPC, 2000). Specifically, major urbanized areas are found
within and around the City of Milwaukee in the Milwaukee County
where more than 60% of population of this region inhabits. An
apparent outward development trend can be discerned from the
City of Milwaukee and along state and interstate highways.

A cloud-free Landsat ETM+ image acquired on July 9, 2001 was
obtained, and rectified to a Universal Transverse Mercator (UTM)
projection with WGS84 datum and UTM zone 16. The multispectral
optical bands, including visible, near-infrared (VNIR) (i.e. bands 1
to 4) and shortwave infrared (SWIR) bands (i.e. bands 5 and 7),
of this image were utilized for spectral unmixing for fractional land
covers. The digital numbers (DNs) of multispectral bands were
then converted to at-satellite reflectance according to the work of
Markham and Barker (1986) and Landsat 7 science data user's hand-
book (Irish, 2000). In addition, thermal band DNs were employed to
retrieve LST for further analysis and modeling, and the retrieval pro-
cess is detailed in the next section. Note that although the original
thermal band of ETM+ image was obtained at a 60-m spatial resolu-
tion, its final product was resampled to 30-m resolution to be con-
sistent with the spatial resolution of other multispectral bands (U.S.
Geological Survey, 2010). The 2001 Landsat ETM+ image was adopted
to be consistentwith the land use/land cover classification and impervi-
ousness percentage data from the 2001 National Land Cover Dataset
(NLCD). For a better appreciation of development and accuracy assess-
ment of the 2001 NLCD data, readers can refer to the studies conducted
by Yang et al. (2001), Yang et al. (2003) and Homer et al. (2004).
Besides, for LST retrieval, we also collected weather data from the
University of Wisconsin-Milwaukee field station and zenith wet delay
estimate data (DeMets, 2012), respectively.

3. LST retrieval

In order to obtain accurate LST values, we adopted the mono-
window algorithm (MWA) developed by Qin et al. (2001), which
accounts for the impacts of emissivity and atmosphere using both re-
motely sensed thermal data andmeteorological data. The formulation
of LST can be expressed as follows.

Ts ¼ a6 1−C6−D6ð Þ þ b6 1−C6−D6ð Þ þ C6 þ D6ð ÞT6−D6Ta½ �=C6 ð1Þ

with

C6 ¼ ε6τ6 ð2Þ

D6 ¼ 1−τ6ð Þ 1þ 1−ε6ð Þτ6½ � ð3Þ

where a6=−67.355351 and b6=0.458606 are model constants; ε6
is the emissivity for Landsat ETM+ thermal band 6; τ6 is the atmo-
spheric transmittance for Landsat ETM+ thermal band 6 on the
image acquisition date; Ta is the effective mean atmospheric temper-
ature; and T6 is the brightness temperature for Landsat ETM+ ther-
mal band 6. To retrieve LST data using Eq. (1), parameters ε6, τ6, Ta,
and T6 should be predetermined respectively (Okwen et al., 2011),
and the details of deriving these parameters are described in the
following subsections (see Fig. 2).

3.1. Determination of emissivity (ε6)

We adopted the NDVI thresholds method, which considers differ-
ent impacts of distinct land cover types (e.g. water, vegetation, bare
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