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The inherent optical properties (IOPs) of natural waters are the most significant factors affecting light prop-
agation within water columns, and thus play indispensable roles on estimation of aquatic biomass, primary
production, and carbon pools. Despite its importance, no IOPs retrieval model was specifically developed for
inland water bodies, although significant efforts were made on oceanic inversion models. In addition, for
inland waters, an IOPs-based model is often preferred for estimating chlorophyll-a (Chl-a) concentration,
an application of IOPs, over empirical and some semi-empirical algorithms. Then developing a model for es-
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[OPs estimation timating both I0Ps and Chl-a is of significance for understanding the bio-optical properties and occurrence of
Chlorophyll-a algal blooms in eutrophic reservoirs, lakes and estuaries. In this paper, an IOPs Inversion Model of Inland Waters

Inherent optical properties (IIMIW) for deriving natural water IOPs and estimating Chl-a is proposed and validated. The results indicate that
Inland waters this model can be used to accurately retrieve absorption coefficients at 443 nm and 665 nm with R? = 0.8347
OCLI and R? = 0.7550 respectively for Indiana study sites, and to estimate Chl-a from the derived absorption coeffi-
AISA cients at high accuracies (R?> = 0.9292 and a mean relative error 21.65%) with samples collected from eight dif-
ferent study sites in the world and in different seasons. The model was also applied on Airborne Imaging
Spectrometer for Application (AISA) images to map IOPs and Chl-a. Through validation by in situ measured
Chl-q, results directly show that IIMIW can predict Chl-a with good accuracy even using the AISA bands, to as
well indirectly prove that non-water absorption coefficients are retrieved accurately, at least within red and
near-infrared region. Further biogeochemical information can be derived from these maps as well. These prom-

ising mapping results reveal possible remote routine surveillance of bio-optical states of inland waters.
© 2013 Elsevier Inc. All rights reserved.

1. Introduction
1.1. Deriving inherent optical properties (IOPs) for inland waters

Underwater light penetration is fundamentally important to aquatic
ecosystems because the quantity and quality of underwater light drive
the photosynthesis of algae dwelling in water bodies (Gallegos et al.,
2005). The inherent optical properties (IOPs) of natural waters, includ-
ing absorption (a(\), referring to Table 1 for symbols and acronyms) and
backscattering (by(\)) coefficients, are the most significant parameters
governing the light propagation within the water column and thus in-
dispensable to the estimation of aquatic biomass, primary production,
heat flux, and carbon pools (Hirawake et al., 2011; Le et al,, 2009a; Lee
et al, 1996; Oliver et al., 2004; Wang et al.,, 2005; and references
therein).
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In recent years many efforts have been made to derive the IOPs from
the apparent optical properties (AOPs), e.g. irradiance reflectance and
remote sensing reflectance (e.g. Garver & Siegel, 1997; Hoge & Lyon,
1996, 2005; Le et al, 2009a; Lee et al., 1996; Wang et al., 2005).
Among those existing algorithms, empirical algorithms use simple or
multiple regressions to relate the IOPs to the ratio of the AOPs. They
can be implemented rapidly, but their application is limited due to the
variation of optical properties across different water bodies (Le et al,
2009a). Semi-empirical and analytical algorithms based on radiative
transfer equations work better for different water bodies and usually
perform better than the empirical algorithm. A derivation of IOPs from
remote sensing reflectance is commonly based on the reflectance
model shown in Eq. (1) (Gordon et al., 1988) that describes the relation-
ship between remote sensing reflectance and IOPs.
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Table 1
Symbols and acronyms.

Symbol/acronym

Lu(o 7)

Description Unit

Upwelling radiance below Wm 2sr!
water surface
Ly Radiance. x could be w:
water-leaving radiance;
sw: total radiance of water
surface; sky: Sky radiance;
p: radiance of standard panel
Upwelling irradiance below
water surface
Eq Downwelling irradiance. 0 +:
above water surface
0—: below water surface
Remote sensing reflectance sr
above water surface
Trs(N) Remote sensing reflectance S
below water surface
f Geometrical light factors -
Q Light distribution factor ST
a(\) Total absorption coefficients m
of water column
ax(N) Absorption coefficients of x. x m
could be w: water; ph:
in vivo phytoplankton; sol:
in vitro phytoplankton;
t — w: non-water constituents;
cdom: colored dissolved
organic matter; cdm: colored
detritus matter
by(N\) Total backscattering coefficients m
of water column
Backscattering coefficients of x. m
x could be w: water;
p: suspended particles
10Ps Inherent optical properties m
Chl-a Chlorophyll-a (concentration)
TSM Total suspended matter gm
(concentration)
CDOM Colored dissolved organic matter -
NAP Non-algal particles (concentration) gm
CDM Colored detritus matter, -
i.e. CDOM + NAP

Wm2sr!

W m™?

W m—2

bbxo\)

where 15(N\) is the remote sensing reflectance just beneath water
surface, L,(N, 0—) and E4(\, 0—) are upwelling radiance and
downwelling irradiance, respectively, and g; and g, are geometric
factors. Hereafter the wavelength dependence of all model variables
will be omitted for briefness unless it is necessary. Eq. (1) is simplified
in many studies (e.g., Brando & Dekker, 2003; Giardino et al., 2007;
Hakvoort et al., 2002; Hoogenboom et al., 1998; Jupp et al., 1994;
Kutser, 2004; Kutser et al., 2006; Zhang et al., 2009) by omitting the
quadratic term, resulting in Egs. (2) and (3):

_f b

Is = aa i bb (2)
_E,0—) . b
RO =F 0 S ais, (3)

where f is a factor of light field, Q is the light distribution factor
defined as Q = E,(0—) / L,(0—); R(0—), E,(0—) and E4(0—) are
subsurface irradiance reflectance, upwelling and downwelling irradi-
ance, respectively.

Built upon Egs. (1)-(3), several semi-empirical and semi-analytical
algorithms have been proposed for deriving the IOPs, including the
Garver-Siegel-Maritorena (GSM) algorithm (Garver & Siegel, 1997;
Maritorena & Siegel, 2005, 2006; Maritorena et al., 2002), the algorithm
(referred to as HL) by Hoge and Lyon (1996, 1999, 2005) and the
quasi-analytical algorithm (QAA) by Lee et al. (2002, 2009) and Lee

and Carder (2004). The difference among them lies in that GSM and
HL require pre-defined spectral shapes of phytoplankton absorption
(apn(N\)) and colored detritus matter (CDM, colored dissolved organic
matter (CDOM) + non-algal particles (NAP)) absorption (acgm(N))
while QAA does not have such a requirement.

GSM, HL and QAA are all originally developed for ocean water and
thus may not be suitable for optically complex inland waters due to
high concentrations of suspended sediment (SS) and CDOM (Gons,
1999; Gons et al., 2000; Schalles, 2006; Schalles et al., 2001; Zhou
et al., 2009). Such complexity is primarily manifested in the variation
of the factors such as gy, g», f and Q that are used in Egs. (1), (2) and
(3). However, previous studies assume g; and g5 as constants (Garver
& Siegel, 1997; Hoge & Lyon, 1996, 1999, 2005; Hoge et al., 19993,
1999b; Lee & Carder, 2004; Lee et al., 1999, 2002, 2007, 2009;
Maritorena & Siegel, 2005, 2006; Maritorena et al., 2002; Salama et
al.,, 2009; Wang et al., 2005), f or é as a constant (Hakvoort et al.,
2002; Hoogenboom et al., 1998), or f as a function of just light geom-
etry (Brando & Dekker, 2003; Giardino et al., 2007; Jupp et al., 1994;
Kutser, 2004; Kutser et al., 2006; Zhang et al., 2009). In fact, f, g (&1
is equivalent to é (Maritorena et al., 2002)], and g, depend on ambi-
ent factors including bio-optical states, solar angles, and wind speed
(Gould et al., 2001; Morel & Gentili, 1993, 1996; Zhang et al., 2009),
and as a result may vary sample by sample or across different water
bodies (Aurin & Dierssen, 2012; Gould et al., 2001). For example,
the values assigned to g; and g, in QAA (Lee & Carder, 2004; Lee et al.,
2002, 2009) differ from those used in GSM (Garver & Siegel, 1997;
Maritorena & Siegel, 2005, 2006; Maritorena et al., 2002), and those
used by Gordon et al. (1988), Lee et al. (1999), and Aurin and
Dierssen (2012). The reported value for g; (or é) could range from
0.08 to 0.15(Morel et al., 2002) even for spatially relatively homoge-
neous ocean waters. Aurin and Dierssen (2012) suggested that using
constant g; and g, for different water types is not appropriate. In turbid
inland water bodies, the variation of water properties at different sites is
more complex (Zhang et al., 2009), leading to the dependence of g; and
g, on study locations or sites. Therefore, g; and g, should be considered
as variables when deriving the IOPs for optically complex inland waters
is of interest. This motivates us to build an IOPs retrieval model that is
capable of accommodating the variation of g, and g, across various in-
land water bodies and does not require recalibration when it is applied
to different inland water bodies.

1.2. Application of IOPs for chlorophyll-a estimation

Chlorophyll-a (Chl-a) concentration is essential for monitoring
algal blooms, especially toxic cyanobacterial blooms in reservoirs,
lakes, and estuaries (Matthews et al., 2010; Randolph et al., 2008;
Simis et al., 2005, 2007). Because of the optical complexity of inland
waters, it is not easy to reliably retrieve Chl-a from remote sensing re-
flectance or water leaving radiance L,, using empirical algorithms
such as band ratio (Dekker, 1993; Gitelson, 1992; Jupp et al., 1994;
Kallio et al., 2001; Li et al., 2010), fluorescence line height (Gons
et al., 2008; Gower & King, 2007; Hu et al., 2005), three-band tuning
algorithms (Dall'Olmo & Gitelson, 2005; Duan et al., 2010; Gitelson
et al., 2007, 2008, 2009), four-band algorithms (Le et al.,, 2009b,
2010), and other band combination methods (Budd & Warrington,
2004; O'Reilly et al., 1998). These algorithms are usually limited to
the dataset on which they are calibrated (Giardino et al., 2007;
Matthews et al., 2010). Particularly, when SS concentration is high,
the scattering of SS usually masks the optical response of Chl-a,
reducing the predictive power of the empirical algorithm (Bukata,
1995; Zhou et al., 2009). Therefore, IOCCG (2006) and Zhou et al.
(2009) suggested to derive Chl-a from IOPs rather than directly
from AOPs for highly turbid inland waters (e.g. Gilerson et al., 2010;
Gons et al.,, 2002, 2008; Li et al., 2011; Simis et al., 2005, 2007). In
this regard, several equations (e.g. Ritchie, 2008), can be used to
quantify Chl-a from in vitro a,n(N\) in laboratory, and have potential
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