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The ability to carry out land cover change analyses based on Land Use/Cover Classification (LUCC) maps
from remote sensing data depends on the quality of the mapping method. Land cover areas obtained
from unadjusted classifiers with unbalanced misclassification between different classes could result in
erroneously identifying trends. The aim of our work is to describe a novel approach to obtaining LUCC
maps with balanced misclassification errors and therefore unbiased predicted areas for each class. We
achieve this by numerically minimizing the differences between area proportions obtained with unbiased
statistical reference estimates, which is measured by a quantity we refer to as the Sum of Squared Class
Unbalancedness (SSCU). We assess the proposed methods in the context of land cover classification with
support vector machine classifiers at four points in time between 1975 and 2010 in the Maipo river basin
(Central Chile) based on Landsat imagery. In this study, the optimization reduced the SSCU (θ) by 94% on
average compared to unadjusted classification. The classifier adjustment also slightly increased the
accuracy of the resulting LUCC maps. The amount of bias in classified land cover area and the degree of
unbalancedness of misclassification errors differed among the land cover classes. Agricultural land showed
the largest reduction in mean relative differences from 27% to 2% compared to the unbiased statistical area
estimates. The greatest increase in User's Accuracy was obtained for urban land cover in 1999, where an
increase from 56% to 85% was achieved. Qualitative improvements in the classification were visible in difficult
classification areas such as dry floodplains. The proposed method is especially recommended for studies that
aim to provide multitemporal comparisons.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Land cover and land use change (LCLUC) have been recognized as
key elements of global environmental change (Manandhar, Odeh, &
Pontius, 2010). Land use/cover classification (LUCC) maps are
important information that provides evidence of spatial LCLUC
dynamics and intensity. The ability to carry out LCLUC analyses based
on LUCC maps from remote sensing data depends on the quality of
the mapping method, in particular the sampled reference data and the
classification algorithm applied. Additionally, map accuracy quantifica-
tion is required to assess the utility of a map for an application
(Stehman, 2001), such as detection of change trends (Bakr, Weindorf,
Bahnassy, Marei, & El-badawi, 2010; Yuan, Sawaya, Loeffelholz, &

Bauer, 2005) or spatial land use change modeling (Arsanjani, Helbich,
Kainz, & Darvishi, 2013; Pontius et al., 2007).

Several statistical methods have been implemented and adapted
to generate estimates of areas of land cover or land cover change.
The objective of LUCC is not only to represent the area of land-cover
classes in a map, but to estimate the geographic area of each class.
Two common approaches are the use of a confusion matrix to adjust
the area derived from pixel counting and the use of a survey sampling
regression estimator that takes advantage of auxiliary variables to
improve precision of the estimated area (Stehman, 2009). Remote
sensing can be used in a variety of ways as support to area frame
surveys, for example for stratification or to define sampling units
(Gallego, 2004). Czaplewski and Catts (1992), Gallego (2005) and
Gallego and Stibig (in press) suggested the use of stratified sampling
designs for unbiased estimators. In these cases, the sampling proba-
bility is proportional to the area of the sampling unit within each stra-
tum, and a weighted average can be used for area estimation.
Subsequently, when LUCC mapping is required, it is possible to
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apply several classification algorithms considering remotely-sensed
and geographic attributes to obtain a spatial representation of land
use/cover. Among the currently more widely used classification
methods are linear and quadratic discriminant analysis, the support
vector machine (SVM) and random forests (Otukei & Blaschke, 2010).
Among these techniques, the SVM has proven to be a promising
algorithm for LUCC studies (Mountrakis, Im, & Ogole, 2011).

Calibration of the classifier and validation of the predictions are
required steps before using LUCC maps for research or to make policy
recommendations. In an accuracy assessment process, data quality is
quantified, so users can be able to evaluate the utility of a thematic
map according to their specific objectives (Stehman, 2001). Primary
components of an accuracy assessment are sampling design and
reference data collection; these are used to select and obtain reference
land-cover data sets. Finally accuracy parameters are calculated
(Stehman & Czaplewski, 1998). Traditionally, research on the estima-
tion of accuracy parameters has been focused on generating statistically
valid estimates of accuracy rates and describing misclassification errors
(Hammond & Verbyla, 1996; Nusser & Klaas, 2003; Stehman &
Czaplewski, 1998; Stehman, Wickham, Smith, & Yang, 2003). From
these primary studies, the confusion or error matrix is at the core of
classification accuracy assessment and widely used in the domain of
remote sensing (Congalton & Green, 2009). The main condition for the
use of a confusion matrix is the correct application and interpretation
required for the satisfaction of often untenable assumptions (e.g., perfect
coregistration of data sets) and the provision of rarely conveyed
information (e.g., sampling design) (Foody, 2002).

There are advantages when both land use/cover estimates of
areas and classifier algorithm procedures are linked. Through the
connection of these methodologies, land use/cover areas can be esti-
mated by the unbiased procedure and evaluated according to the
accuracy estimators from a probability sampling design. For instance,
accuracy comparisons have been made to compare different sampling
designs (e.g. Stehman et al., 2003), LUCC algorithms (e.g., Brenning,
2009; Brenning, Kaden, & Itzerott, 2006; Petropoulos, Kontoes, &
Keramitsoglou, 2012) or the relevance of auxiliary variables in the
LUCC model (e.g. Xie, Lin, & Ren, 2011). However, the issue of unbal-
anced misclassification errors in LUCC mapping has received little
attention and requires further research. One possible approach is to
apply optimization techniques that tune classifiers in order to ensure
that the resulting thematic maps achieve balanced commission/
omission errors and hence unbiased land cover areas. We therefore
propose to identify classifier parameters that minimize a measure of
unbalancedness of the confusion matrix, and to apply these optimized
parameters to obtain LUCCmapswith nearly balanced class proportions
for each land cover class.

The aim of our work is to generate spatially explicit information of
balanced land cover by development of algorithms balancing com-
mission and omission errors in every class of LUCC maps. In this
paper, we describe a methodology to obtain balanced LUCC maps
based on the adjustment of predicted probabilities for each land
cover class by an optimization process that reduces differences be-
tween land cover areas obtained by unbiased statistical estimation
and by classifier prediction. We then illustrate the application of
this method to SVM classification in a case study from Central Chile
with several land cover classes of different proportions.

2. Data and methods

Land cover classification with balanced commission/omission
errors was performed by applying pixel-based SVM classifiers using
multispectral remote sensing and topographic data as prediction var-
iables, and using the proposed method to adjust the SVM classifier
based on unbiased statistical estimates of land cover areas. The classi-
fication and adjustment were performed independently for four time
points between 1975 and 2010. An overview of the main processes

applied is shown in Fig. 1, while a brief description of these steps is
provided in the following sections. After introducing the collection
of the reference land-cover dataset (Section 2.1) and outlining the
area estimation procedure (Section 2.2), we describe the general
SVM classification algorithm (Section 2.3) and the proposed proce-
dure used for achieving balanced commission and omission errors
of land cover maps (Section 2.4).

2.1. Reference land-cover data collection

We adopted a stratified sampling design to handle classes with
small coverage (e.g., water and wetlands). We calculated the required
sample size for each sampling stratum using the approach for multi-
nomial proportions of Thompson (1987). In this method, which con-
siders a worst-case scenario, the number of samples does not depend
on the number categories of the population (Thompson, 2000). The
main advantage is that the method is less conservative and does not
require prior knowledge about largest land cover class size as com-
pared to other approaches (Congalton & Green, 2009). Thus,
Thompson's sample size rule depends only on two parameters for
each stratum s: a confidence level α and the precision ds. We chose
the α = 10% confidence level and d values between 0.05 and 0.10
as shown in Table 1 and explained below. With these parameters,
the required sample size ns for a stratum s can be determined from
the tabulated ds

2 ns values of Thompson (1987). The resulting number
of sample pixels was then randomly selected from the area corre-
sponding to each stratum.

Our objective was to identify six land cover classes (c = 1,…,6):
snow cover, water bodies, urban, agricultural, bare soil, and vegetation
(shrublands and grasslands). We stratified with respect to two parame-
ters, slope and normalized difference vegetation index (NDVI; Rouse and
Space (1973)). NDVI values were obtained from the visible (Red) and
near infrared (NIR) reflectance as NDVI = (NIR − Red) / (NIR + Red).
For stratification we used NDVI values calculated from Landsat 5 TM
images of 1987, which showed higher quality due to low cloud cover,
and does not suffer from gaps such as those resulting from the failure
of the Scan Line Corrector (SLC) of Landsat 7 ETM+ in 2003.

For the stratification step, two slope and three NDVI classes were
combined, resulting in six sampling strata (Table 1). We used a preci-
sion of d = 0.1 for all but one stratum and d = 0.05 in stratum E22.
E22 (48.4% of the area) was given a better precision because of its
larger contribution to the overall precision and because of the hetero-
geneity of this stratum. The same precision of 0.1 was used for each of
the smaller strata regardless of stratum size in order to obtain precise
area estimates for land cover classes such as water bodies that are
prevalent only in small strata such as E11. The total sample size was
908 pixels, covering 14,833 km2 (Table 1).

Reference sample points were classified by visual image interpre-
tation based on three-band false-color composites of Landsat MSS,
TM and ETM+ spectral images. To better distinguish the different
land cover classes we used different three-band composites based
on the available bands from B2 to B5 in the case of MSS, and from
B1 to B5 and B7 for TM and ETM+.

2.2. Reference condition: land cover area estimation

Land cover area P̂ c estimates for the area proportion of Pc each
reference land cover class c were estimated using standard proce-
dures for stratified sampling designs (Thompson, 2000):

P̂ c ¼
Xk

s¼1

ncs

ns
ps ð1Þ

where ncs is the number of samples in class c within stratum s, ns is
the total sample size for this stratum, and Ps is the area proportion
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