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This study presents a robust approach for characterization of multi-layered forests using airborne laser scan-
ning (ALS) data. Fuel mapping or biomass estimation requires knowing the diversity and boundaries of the
forest patches, as well as their spatial pattern. This includes the thickness of the main vegetation layers,
but also the spatial arrangement and size of the individual plants that compose each stratum. In order to
decompose the ALS point cloud into genuine 3-D segments corresponding to individual vegetation features,
such as shrubs or tree crowns, we apply a statistical approach based on the mean shift algorithm. The seg-
ments are progressively assigned to a forest layer: ground vegetation, understory or overstory. Our method
relies on a single biophysically meaningful parameter, the kernel bandwidth, which is related to the local for-
est structure. It is validated on 44 plots of a Portuguese forest, composed mainly of eucalyptus (Eucalyptus
globulus Labill.) and maritime pine (Pinus pinaster Ait.) trees. The number of detected trees varies with the
dominance position: from 98.6% for the dominant trees to 12.8% for the suppressed trees. Linear regression
models explain up to 70% of the variability associated with ground vegetation and understory height.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Forests, woodlands, and shrub formations are very important eco-
systems because they provide foundations for life on Earth through
their ecological functions: regulation of climate and water, habitat
for animals, and supply of food and goods. They exhibit various cano-
py structures, from homogeneous to heterogeneous, and from single-
to multi-layered (Landsberg & Gower, 1997). Today we know the hori-
zontal structure that describes the patchiness in forest stands better
than the vertical structure, which is difficult to quantify and yet is
an important characteristic (Hall et al., 2011). The canopy layers
(overstory, understory, and ground vegetation) are distinct from each
other in their density, thickness, and water content. A better appraisal
of this vertical arrangement, at high spatial resolution, would be
valuable for many applications in forestry (Ares et al., 2010), carbon

cycle studies (Moore et al., 2007), and ecology (Brokaw & Lent, 2000;
Camprodon & Brotons, 2006). As an example, foresters use fuelmodels
for predictingfire behavior (Pyne et al., 1996), and fire behaviormodels,
such as FARSITE (Finney, 2004) or BehavePlus (Andrews et al., 2005),
require information about vegetation strata thickness to detect areas
where fire easily propagates and spreads (Anderson, 1982; Sandberg
et al., 2001).

Airborne laser scanning (ALS) is an active remote sensing tech-
nique that provides georeferenced distance measurements between
a remote sensing platform and the surface (Mallet & Bretar, 2009;
Shan & Toth, 2009). In recent years, it has been applied over natural
landscapes to extract terrain elevation (Bretar & Chehata, 2010; Kraus
& Pfeifer, 1998), classify land cover (Antonarakis et al., 2008; Asner et
al., 2008; Breidenbach et al., 2010; Hyyppä et al., 2008; Yoon et al.,
2008), evaluate wildlife habitat (Clawges et al., 2008; Martinuzzi et al.,
2009), estimate biomass (Asner et al., 2010; García et al., 2010; Zhao
et al., 2009), and assess fuel characteristics (Andersen et al., 2005;
Hollaus et al., 2006; Mutlu et al., 2008; Riaño et al., 2003). Depending
on the nature of the target, a single pulse emission may induce one or

Remote Sensing of Environment 121 (2012) 210–223

⁎ Corresponding author at: Institut Géographique National, Laboratoire MATIS, 73
avenue de Paris, 94160 Saint Mandé, France.

E-mail address: antonio.ferraz@ign.fr (A. Ferraz).

0034-4257/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.rse.2012.01.020

Contents lists available at SciVerse ScienceDirect

Remote Sensing of Environment

j ourna l homepage: www.e lsev ie r .com/ locate / rse

http://dx.doi.org/10.1016/j.rse.2012.01.020
mailto:antonio.ferraz@ign.fr
http://dx.doi.org/10.1016/j.rse.2012.01.020
http://www.sciencedirect.com/science/journal/00344257


several backscattered echoes. As the laser beam penetrates down into
the forest canopy layers, an unstructured 3-D point cloud that is a dis-
crete model of the target is obtained. There are two main spatial scales
for tackling the extraction of forest parameters from ALS data: at the
plot scale, the biophysical variables are averaged over an area encom-
passing several trees (e.g. mean canopy height, biomass, stem density,
leaf area index), while at the individual scale, they are estimated for a
single tree (e.g. tree height, crown diameter, crown base height).

Vertical stratification has been assessed at the plot scale (Maltamo
et al., 2005; Riaño et al., 2003, 2004; Zimble et al., 2003). Morsdorf et
al. (2010) use the ALS intensity to discriminate different vegetation
strata. They apply a supervised cluster analysis, assuming that some
species have a better light reflection ratio than others. This method
works fairly well in forest ecosystems made of mono-species strata.
The intensity is somewhat difficult to analyze because it depends on
the sensor as well as on the geometry, orientation, and optical prop-
erties of the target (leaves, branches, trunks). Some authors delineate
vegetation strata by fitting continuous probability distributions, like
the Weibull distribution or mixture models, to the ALS density pro-
files (Coops et al., 2007; Dean et al., 2009; Jaskierniak et al., 2010;
Maltamo et al., 2004). However, plot-based methods are not the most
appropriatemeans to describe the vertical stratification of complex eco-
systems, such as Mediterranean forests that are characterized by an
open dominant canopy and a lush undergrowth made of herbaceous
and woody plants (Di Castri, 1981). These are often highly fragmented
forests, the stratification ofwhich varies locally due to small ownerships
administered according to different management rules (EEA, 2008).

So far, single-tree based methods rely on a canopy height model
(CHM), which is an oversimplified representation of reality in vertically
heterogeneous canopies (Hyyppä et al., 2004; Morsdorf et al., 2004;
Persson et al., 2004; Popescu & Wynne, 2004; Solberg et al., 2006). In
order to investigate the spatial pattern of dominated trees, some

authors developed multi-stage approaches. For instance, Richardson
and Moskal (2011) first delineate groups of trees in the CHM and then
calculate the number of trees by fitting a statistical relationship to the
corresponding point cloud distribution. Reitberger et al. (2009) identify
the taller trees within each group, determine the stem position, and
apply a normalization-cut segmentation method to extract the smaller
ones. Despite good performance, these approaches are site-dependent
because they require several empirical parameters. Moreover, they do
not properly address the issue of vertical stratification in multi-layered
forests because, even if they delineate the topmost tree crowns, many
ALS points corresponding to ground or understory vegetation remain
unassigned.

Therefore, it seems that an approach that simultaneously seg-
ments vertical and horizontal structures of forest canopies is lacking.
This paper validates a segmentation method based on the mean shift
algorithm. This method has been tested on a 3-D point cloud acquired
with a small-footprint ALS in a multi-layered Mediterranean forest.
We first present the experimental data and the algorithm. The seg-
mentation of the forest into different strata and the derivation of
the geometry of individual vegetation features are then detailed.

2. Experiment

2.1. Study area

The study area is located near the city of Águeda in northwest
Portugal (40°36′ N, 8°25′ W). It covers 9 km2 and its altitude varies

Fig. 1. Regular grid superimposed on the land cover map of the study area.

Table 1
Biophysical characteristics of stand #30.

Height class (m) Species % Dominance Mean height (m) % Cover

0–2
Ferns 95

1.2 50Ulex 5

2–8
Acacia 70

6.0 8Pinus 30
>8 Eucalyptus 100 21.2 20

Table 2
Field inventory of ground vegetation and understory, all stands.

Mean height (m) % Cover

Ground
vegetation

Understory Ground
vegetation

Understory

Minimum 0.15 0 2 0
Maximum 1.3 6 100 95
Mean 0.53 2.41 52.1 15.6
Standard deviation 0.3 1.64 33 20.2

Fig. 2. Age class of the stands. The black bars correspond to the eucalyptus and the gray
bars to the pines.

Table 3
Field inventory statistics for trees in mature eucalyptus and pine stands.

DBH
(cm)

CBH
(m)

Total
height
(m)

Crown
depth
(m)

Atypical
shape
(%)

Eucalyptus Minimum 1.5 2.5 3.7 0.4

17.2
Maximum 70.0 22.5 35.4 14.2
Mean 9.7 9.4 13.3 3.9
Standard deviation 5.3 3.9 5.2 2.4

Pine Minimum 4.9 7.1 8 0.4

7.7
Maximum 41.4 22.3 25 9.0
Mean 23.5 13.7 17.5 3.8
Standard deviation 8.3 4.8 5.0 1.5
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