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There is an increasing need to monitor the dynamics of green LAI of field crops through the growing season.
A simple approach is to use a regression model to estimate crop LAI from a vegetation index derived from
optical remote sensing data. However, variations of interference factors in the signal path could induce var-
iations in spectral reflectance, leading to uncertainty in LAI estimation. A semi-empirical equation was imple-
mented to estimate green LAI of field crops from Landsat-5/7 data using a few vegetation indices, including
the normalized difference vegetation index (NDVI), the optimized soil adjusted vegetation index (OSAVI),
the two band enhanced vegetation index (EVI2) and the modified triangular vegetation index (MTVI2).
Data were collected during several growing seasons, from 1999 to 2006, over corn, soybean, and spring
wheat fields in an experimental farm in Ottawa (ON, Canada). LAI estimated for corn, soybean and wheat
from Landsat data using the vegetation indices was compared to ground LAI. Except for NDVI, comparable re-
sults were obtained from the other three vegetation indices, with a coefficient of determination above 0.83
and a root mean square error (RMSE) not more than 0.60. The performance of NDVI was less satisfactory
(RMSE>0.66). The uncertainties in LAI estimation induced by variations in soil reflectance, leaf optical proper-
ties, canopy structure, and atmospheric conditions were assessed through a global sensitivity analyses using
the PROSPECT leaf model coupled to the SAIL canopy model along with the 6S atmospheric transmission
model. The sensitivity analyses show that different indices are affected differently by the various interference
factors. Comparatively, NDVI is the most influenced by leaf chlorophyll but the least affected by leaf inclination,
OSAVI and the narrow bandMTVI2 are more efficient in reducing soil effects, and EVI2 has a better performance
in reducing aerosol perturbation. At high LAI, the uncertainty of NDVI is the smallest, but the uncertainty prop-
agated to LAI estimation is the largest due to saturation. In this case, vegetation indices that are less prone to
saturation should be considered, such as EVI2 and MTVI2. When MTVI2 is used on multispectral data, its ability
to reduce soil and leaf chlorophyll perturbation is similar to EVI2 but weaker than when it is used on hyperspec-
tral data. These results show that vegetation indices can be used in a simple regression model to generate base-
line green LAI product for seasonal crop growthmonitoring, however it is important to be aware of the sources of
uncertainty and their relative amplitudes when using the product.

Crown Copyright © 2012 Published by Elsevier Inc. All rights reserved.

1. Introduction

Leaf area index (LAI) determines the transpiration, the intercep-
tion and absorption rates of solar radiation by vegetation (Monteith
& Unsworth, 2008). LAI is an important variable in numerous land
surface models (Jarlan et al., 2008; Oleson & Bonan, 2000; Parton et
al., 1996; van den Hurk et al., 2003). Assimilation of LAI derived
from remote sensing data into cropmodels has been shown to improve
biomass and yield estimation (Dente et al., 2008; Fang et al., 2008;
Guérif & Duke, 2000; Prevot et al., 2003). For the data assimilation
approaches, high resolution multi-temporal remote sensing data is
advantageous, as spatial variability captured by remote sensing data is

useful for adjusting crop and soil properties taking into account local
conditions (Guérif & Duke, 2000), and multiple remote sensing obser-
vations over a given growing season are better for the optimization or
adjustment procedures than a single observation at the peak develop-
ment stage (Fang et al., 2008).

Several approaches have been developed to estimate LAI using op-
tical remote sensing data. For instance, a three-dimensional radiative
transfer model can be inverted to generate global LAI products from
MODIS data using a lookup table (Knyazikhin et al., 1998). Neural
network approaches have been developed to generate canopy bio-
physical products from top-of-canopy (TOC) reflectance measure-
ments, such as the algorithms used to generate LAI products from
SPOT-VEGETATION (Baret et al., 2007) or MERIS (Bacour et al., 2006)
data. The neural network is usually trained with a spectral database
built by running leaf-canopy radiative transfer models. Although these
approaches are based on physical models and have the capacity to
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incorporate all the radiometric measurements available from a
sensor, a few studies have showed that the accuracy of the derived
products may not meet application requirements in specific cases
(Canisius et al., 2010; Weiss et al., 2007). For instance, crop LAI was
found to be significantly underestimated by the MODIS LAI product,
and this could not be completely explained by biome misclassifica-
tion and atmospheric perturbation (Yang et al., 2007). It is suggested
that a standardized regional network is needed for in situ LAI mea-
surement to calibrate the MERIS LAI products (Canisius et al., 2010;
Morisette et al., 2006). Other approaches consist in developing sim-
ple regression models using in situ LAI measurements or LAI prod-
ucts derived from well-calibrated higher resolution remote sensing
data (Fernandes et al., 2003). The Partial Least Squares Regression
(PLSR) is one of such an approach (Arenas-Garcia & Camps-Valls,
2008; Hansen & Schjoerring, 2003), in which LAI is estimated from
a set of features using multiple regression analysis. The feature set
is extracted from the original radiometric measurements through
principal component analysis. Although information in all the spectral
bands is used in this approach, it is not straightforward to interpret
the physical meaning of the extracted features. Vegetation indices com-
bining reflectance from a few spectral bands have been related with
various biophysical descriptors and have been used for LAI estimation.
This approach provides baseline LAI products that meet the require-
ments of a variety of studies (Chen et al., 2002; Fassnacht et al., 1997;
Fernandes et al., 2003; Haboudane et al., 2004).

Most vegetation indices used for green LAI estimation combine
reflectance in the visible and near infrared (NIR) wavelengths. Reflec-
tance in the visible region helps to control the perturbation effect
of background soil, whereas reflectance in the NIR domain allows
for a large dynamic range of detection (Pinty et al., 2009). The nor-
malized difference vegetation index (NDVI) is by far the most widely
used index in the literature; however, it is sensitive to soil reflectance
and saturates at a relatively low LAI level. Substantial efforts have
been made to minimize soil effects, such as the development of the
soil adjusted vegetation index (SAVI; Huete, 1988), the optimized
SAVI (Rondeaux et al., 1996) and the Modified SAVI (Qi et al.,
1994). Initiatives have also been devoted to improving the sensitivity
of a vegetation index at high LAI and to reducing atmospheric perturba-
tion, such as the three-band and the two-band enhanced vegetation
index (EVI; Huete et al., 2002; Jiang et al., 2008). Haboudane et al.
(2004) developed the modified triangular vegetation index (MTVI2),
which combines hyperspectral reflectance in the NIR, red and green
wavelengths in order to reduce perturbation from leaf chlorophyll
content variation for crop green LAI estimation. In addition to suppress-
ing chlorophyll effects, MTVI2 also incorporates an adjustment mecha-
nism to reduce background soil effect. There is a need for research
to evaluate the performance of these vegetation indices in deriving LAI
products over multiple years within a reasonably large agricultural
region. Especially, as MTVI2 was developed for hyperspectral data, it is
interesting to assess its performance onmultispectral data and compare
it with other vegetation indices.

Vegetation indices are dependent not only on green LAI but also
on other factors. First, spectral reflectance at the canopy level is de-
pendent on leaf optical properties, which are determined by leaf
mesophyll structure, chlorophyll content, dry mass and water content
(Jacquemoud & Baret, 1990). Second, radiation penetrates through
vegetation layer and interacts with background soil; therefore soil
reflectance also contributes to TOC reflectance. Third, atmospheric
constituents interact with radiation and modulate the at-sensor radi-
ance. If the variability of atmospheric constituents cannot be ade-
quately accounted for in atmospheric correction, the uncertainty
will be carried over to canopy reflectance retrieval. Fourth, in addition
to LAI, leaf inclination, clumping and solar angle also determine radi-
ation interception and absorption; therefore, they also affect vegeta-
tion spectral reflectance. These uncertainties determine that canopy
biophysical parameter retrieval is an ill-posed problem (Combal et

al., 2003). Approaches using contextual information, such as temporal
signature and spatial constraints (Atzberger, 2004; Dorigo et al., 2009;
Koetz et al., 2005; Lauvernet et al., 2008), have been developed to ad-
dress this issue. The use of in situ LAI measurements in a regression
model potentially reduces uncertainties and improves LAI estima-
tion. It is thus desirable to evaluate the capability of vegetation indi-
ces in mapping crop LAI at a regional scale.

The objectives of this study were to 1) evaluate the use of vegeta-
tion indices for crop green LAI estimation over multiple years and at a
regional scale; 2) assess the uncertainty induced by factors other than
green LAI, and evaluate the relative impact of these factors in LAI es-
timation; and 3) assess the influence of spectral resolution on MTVI2
for LAI estimation. High spatial resolution optical remote sensing data
have been made available through various orbital satellites. The Land-
sat program, in particular, has provided high resolution observations
of the Earth's surface on a continuous basis since 1972. This long-term
earth observation program will be merged with the Landsat Data
Continuity Mission (LDCM) in the near future (Wulder et al., 2008).
Thus, data acquired by the Landsat series satellites represent an es-
sential resource, not only for retrospective purposes, but also for pro-
spective studies at a local scale. In the near future, the European Space
Agency's Sentinel-2 satellites will provide operational earth observa-
tion data with high spatial resolution and short revisiting cycle. Thus,
this study will provide assessment on using the Landsat data and impli-
cations on the use of Sentinel-2 data in similar application cases. The
assessment of MTVI2 also provides a prospective study on the use of
hyperspectral data in anticipatory to future satellite hyperspectral mis-
sions, such as the German EnMAP and NASA's HyspIRI missions.

2. Material and methods

2.1. Remote sensing data

In order to generate high resolution LAI product to support re-
search studies on remote sensing data assimilation into crop models,
we collected all cloud-free Landsat-5 and Landsat-7 images over an
experimental farm (~4 by 4 km) in Ottawa, Ontario, covering the
growing seasons from 1999 to 2006. The images were retrieved
from the Landsat data archives of the United States Geological Survey
(USGS). Table 1 lists the number of images available for the 8 growing
seasons. Landsat-7 images after the failure of Scan Line Correction
were not collected, as the study site is located to the edge of the
swath where data missing is significant. The study area is covered
twice every 16 days, either by path/row 15/29, or path/row 16/28
7 days later. However, frequent cloudy conditions reduce the num-
bers of images that can be exploited. In all, 64 images with suitable
quality were available for the 8 growing seasons.

The Landsat images retrieved from the USGS collection were geo-
metrically corrected with satisfactory accuracy. Radiometric calibration

Table 1
Number of Landsat-5/7 images and field LAI sampling sites.

Year Imagesa Number of ground LAI sampling sites

Corn Soybean Wheat Total

1999 6 (5) 6 6
2000 7 (6) 8 8
2001 8 (4) 13 6 14 33
2002 9 (7) 7 7
2003 9 3 3
2004b 9
2005 7 2 2
2006 9 19 19
Total 64 (22) 47 12 19 78

a The total number of Landsat-5 TM and Landsat-7 ETM+ images, with the number
of ETM+ images acquired before the failure of the Scan Line Correction in parentheses.

b In 2004, canola ground LAI was measured.
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