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In this paper two sampling and estimation strategies for regional forest inventory were investigated in detail
and results were presented for various geographical scales. Airborne laser scanner (ALS) data were acquired
to augment data from a systematic sample of National Forest Inventory (NFI) ground plots in Hedmark Coun-
ty, Norway (27,390 km2). Approximately 50% of the NFI field plots were covered by the systematic ALS sam-
ple of 53 parallel flight lines spaced 6 km apart. The area was stratified into eight cover classes and
independent log-transformed regression models were developed for each class to predict total above-
ground dry biomass (AGB). The two laser-ground estimation strategies tested were a model-dependent
(MD), two-phase approach that rests on the assumption that the predictive models are correctly specified,
and a model-assisted (MA) approach with a two-stage probability sampling design which utilizes design-
unbiased estimators. ALS AGB estimates were reported by land cover class and compared to the NFI ground
estimates. The ALS-based MA and MD mean estimates differed from the NFI AGB estimates by about 2% and
8%, respectively, for the entire County. At the county level the smallest estimated standard error (SE) for the
estimates was obtained using the field data alone. However, the SEs calculated from field and ALS data were
based on unequal numbers of ground plots. When considering only the NFI plots in the ALS strips, the smal-
lest SEs were obtained using the MD framework. However, we also illustrated the sensitivity of the estimates
of applying different plausible models. All the applied estimators assumed simple random sampling while the
selection of flight lines as well as ground plots followed a systematic design. Thus, the estimates of SE were
most likely conservative. Simulated sampling undertaken in a parallel research effort suggests that the over-
estimation of the SEs was probably much larger for the ALS-based estimates compared to the NFI estimates.
ALS-based estimates were also derived for sub-county political units and thereby demonstrated how limited
sample sizes affect the standard error of the biomass estimates.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The world's forests sequester and conserve more carbon than all
other terrestrial ecosystems and account for 90% of the annual carbon
flux between the atmosphere and the Earth's land surface (Winjum

et al., 1993). The importance of forest as a carbon sink has been real-
ized and countries ratifying the Kyoto Protocol to the United Nations
Framework Convention on Climate Change are committed to report
their direct human induced emissions and removals of carbon dioxide
in the commitment period 2008–2012 (UNFCCC, 2008). However,
monitoring carbon in forests with high spatial variation of tree densi-
ty poses a major challenge (Fahey et al., 2010). Field-based forest in-
ventory programs, such as the Forest Inventory and Analysis program
of the United States Department of Agriculture Forest Service or Na-
tional Forest Inventory programs in Europe, use large administrative
areas as units of analysis (Rypdal et al., 2005; Woodbury et al.,
2007), but are not designed to provide more local estimates. In addi-
tion, the financial cost of field-based forest inventory can render it
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infeasible as the sole method for estimating the forest carbon of ex-
tensive areas (Andersen, 2011; Gonzalez et al., 2010).

Remote sensing, calibrated by field measurements, addresses
these challenges (Gonzalez et al., 2010). Light Detection And Rang-
ing (LiDAR) is one of the most promising remote sensing technolo-
gies for estimation of various biophysical properties of forests (e.g.
Holmgren et al., 2003; Næsset, 2002; Nilsson, 1996; Ritchie et al.,
1993) and for characterization of forest canopy elements in three
dimensions (e.g. Harding et al., 2001; Lovell et al., 2003) while accu-
rately mapping the terrain below forest canopies (Hodgson &
Bresnahan, 2004; Kraus & Pfeifer, 1998; Reutebuch et al., 2003). In com-
parative studies LiDAR has produced more accurate estimates of forest
biomass than optical satellite sensors (Gonzalez et al., 2010; Lefsky et
al., 2001), airborne multi- and hyperspectral sensors (Lefsky et al.,
2001), and airborne synthetic aperture radar sensors (Hyde et al.,
2006; Nelson et al., 2007; Sexton et al., 2009). In addition, biomass
values above 1300 Mg ha−1 have been estimated without revealing
saturation problems (Lefsky et al., 2002), while other remote sensing
techniques tend to display asymptotic tendencies at biomass values
above, say, 200 Mg ha−1 (e.g. Cohen & Spies, 1992; Imhoff, 1995;
Santos et al., 2003). Thus, airborne LiDAR holds potential for a valuable
data source for estimation of tree biomass components that complies
with requirements of the international conventions that relate to car-
bon stored in trees.

Since 1995, extensive research efforts have been carried out in
Scandinavia to develop airborne LiDAR as an operational tool for
“wall-to-wall” mapping of forest stands for planning purposes
(Næsset, 1997). LiDAR is now used operationally in commercial,
stand-based forest management inventories (McRoberts et al.,
2010b; Næsset, 2004a; Næsset et al., 2004). However, the small-
footprint, discrete-return airborne laser scanner (ALS) data sets
used to estimate forest biomass and carbon are relatively expensive
(Gonzalez et al., 2010), and these costs constrain their use in wall-
to-wall mapping of larger regions such as counties, states, or
nations.

Two different approaches using LiDAR have been developed and
demonstrated in operational projects. These are (1) the use of an air-
borne profiling laser designed for sampling-based inventories
(Nelson et al., 2003b), and (2) the use of an airborne laser scanner
(ALS) for wall-to-wall mapping of forest stands for practical forest
planning (Næsset, 2002; Næsset & Bjerknes, 2001). The profiling sys-
tem developed at the National Aeronautics and Space Administration
(NASA) (Nelson et al., 2003a), labeled “Portable Airborne Laser Sys-
tem” (PALS), is a simple device with low developmental- and opera-
tional costs. It is designed for large-area sampling-based
applications, and its potential has been demonstrated in several pro-
jects (e.g. Boudreau et al., 2008; Nelson et al., 2004). A profiling sys-
tem only collects a narrow line of data on the ground, and does not
provide data for wall-to-wall mapping. In contrast, each flight-line
of a scanning system typically has a swath width of up to several hun-
dred meters. Scanning systems thereby can provide data for a contin-
uous area. This suggests its application as a tool to collect data at the
stand level.

Airborne profiling lasers can provide reliable estimates of for-
est volume and biomass (e.g. Nelson et al., 2008). Profiling sam-
pling designs typically comprise a number of flight lines flown as
parallel strips that are separated by a certain distance. Even
though data acquisition costs are larger, ALS systems can be used
to collect strip samples. The increased amount of data per km of
flight is considered to be an advantage of ALS which makes it a
useful tool also for regional monitoring purposes. ALS has been ap-
plied on the western lowlands of the Kenai Peninsula of Alaska
(Andersen et al., 2009). In addition, Parker and Evans (2004) and
Beets et al. (2010) used scanning lasers in double-sampling appli-
cations to assess volume and biomass. In these studies only the
laser data that coincided with predefined plots were utilized to

estimate biomass. The concept of the current study has previously
been presented by Næsset (2005), Næsset et al. (2009), and
McRoberts et al. (2010a). Gregoire et al. (2011) and Ståhl et al.
(2011) provided empirical examples based on the same dataset
as used in the current study.

When using LiDAR in sampling surveys, standard sampling esti-
mators of mean or total and corresponding variance estimators can-
not be applied due to the complex structure of the surveys, where
scanning swaths may extend over several cover classes (e.g.
Nelson et al., 2008). Furthermore, many different sources of errors
are involved. Model-dependent (MD) approach to estimation and
inference, sometimes called model-based approach (Ståhl et al.,
2011), is so named because it depends heavily on the properties
of the model or models used. However, we would like to emphasize
that the MD approach dealt with by Ståhl et al. (2011) and in the
current study deviate from model-based approach as it is usually
perceived by accounting for sampling variability in a conventional
design-based way (see further details below). The MD approach
has mainly been applied in sampling surveys, however, previous
studies (e.g. Nelson et al., 2008) have not accounted for model-
related errors in the uncertainty assessment. Model-assisted (MA)
approaches (Särndal et al., 1992) might also be an alternative. The
latter approach requires a probability sample, with measured target
variables from the sample units in the area of interest. Recently,
Ståhl et al. (2011) developed a general framework for MD inference
and error assessment, accounting for both sampling and model er-
rors, in cases where regression models are applied to predict the
target variables. In addition, Gregoire et al. (2011) developed esti-
mators as well as estimators of their variance in a MA framework.
For an appreciation of the distinctions between inference based
on the sampling design versus model-based inference, see
Gregoire (1998).

Recently, the MA and MD approaches were also assessed in a
simulated sampling effort undertaken by Ene et al. (2012). The
study by Ene (2012) evaluated the validity of the estimators de-
veloped by Ståhl et al. (2011) and Gregoire et al. (2011) under
random sampling and concluded that the estimators behaved as
expected, i.e., that the MA estimators were unbiased and that
the empirical variances derived through repeated simulations
for both approaches were nearly identical to the analytical vari-
ances. However, using a systematic design the ALS-based analyt-
ical estimators overestimated the empirical (real) variances. Ene
et al. (2012) worked with a synthetic population of Hedmark
County (HC). Although their population differed from the true
but unknown population of HC, which is the target of the current
study, Ene et al. (2012) claimed their population to resemble
some of the major trends in the true population (e.g. decreasing
biomass with increasing latitude and altitude). Two of the
major objectives of Ene's (2012) study were to assess the perfor-
mance of variance estimators for ALS-aided inventories, and to
assess the relative gain in accuracy obtained using auxiliary ALS
data. Thus, we believe Ene's results may shed some light on the
current work.

The MD estimator developed by Ståhl et al. (2011) is rather simple
to apply even if it is rather computationally intensive like other
model-based approaches (cf. McRoberts, 2010). MD and other
model-based estimates often have low variance but the estimator
can also be seriously biased, especially for smaller areas when the ap-
plied model does not fit local conditions (Särndal et al., 1992). The es-
timator does not provide any means for controlling potential bias and
it depends entirely on correctly specified models. Therefore, Särndal
(1978, p. 35) has recommended that a “representative” sample, rath-
er than one of extreme values, used for model development to reduce
the risk of bias (Särndal, 1978), although the main objective of the
data collection under a MD strategy is model development and not
validity of the estimation.
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