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1. Introduction

The Earth’s gravity field and (quasi)geoid can be
represented by a superposition of fields produced by the
Radial Basis Functions (RBFs) (Barthelmes and Dietrich,
1991). RBFs are functions of the spherical distance
between two points. They have a quasi-compact support
and their response decreases rapidly with the distance
from their centre. Due to the characteristics of RBFs, they
show flexible treatment in the regional modeling. Many
studies have been done to evaluate the performance of RBF
approximation of the gravity field. The point-mass kernel
(Barthelmes and Dietrich, 1991; Lin et al., 2014), radial

multi-poles (Foroughi and Tenzer, 2014; Marchenko,
1998; Safari et al., 2014), Poisson wavelet (Tenzer et al.,
2012), and Poisson kernel (Klees et al., 2008) are examples
of applicable types of RBFs in gravity field modeling. The
quality of the gravity field and of (quasi)geoid models
parameterized by RBFs depends on the choice of the RBF
parameters and their number, and on the applied
procedure for solving the problem.

The RBF parameters include centres of RBFs, RBF
bandwidths (or depths), and scaling coefficients. Barthelmes
and Dietrich (1991) used a non-linear optimization algo-
rithm to fix the position of RBFs in a stable approach. They
claimed that optimization of the 3D configuration of RBFs
and their magnitudes at the same time minimized the
number of required RBFs for modeling. Weigelt et al. (2010)
and Safari et al. (2014) used the non-linear regularization
algorithm of Levenberg–Marquardt to optimize the 3D
position of RBFs. Weigelt et al. (2010) demonstrated that
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A B S T R A C T

Radial Basis Functions (RBFs) have been extensively used in regional gravity and

(quasi)geoid modeling. Reliable models require the choice of an optimal number of RBFs

and of their parameters. The RBF parameters are typically optimized using a regularization

algorithm. Therefore, the determination of the number of RBFs is the most challenging task

in the modeling procedure. For this purpose, we design a data processing scheme to

optimize the number of RBFs and their parameters simultaneously. Using this scheme, the

gravimetric quasi-geoid model can be validated without requiring additional information

on the quasi-geoidal geometry obtained from GPS/leveling data. Furthermore, the

Levenberg–Marquardt algorithm, used for regularization, is modified to enhance its

numerical performance. We demonstrate that these modifications guarantee the

convergence of the solution to the global minimum while substantially decreasing the

number of iterations. The proposed methodology is evaluated using synthetic gravity data

and compared with existing methods for validating the RBF parameterization of the

gravity field.
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they avoided an over-parameterization and yielded stable
observation equations by applying minimum number of
base functions. Safari et al. (2014) claimed that they
improved the model quality while reducing the number of
RBFs significantly. Since RBF bandwidths have a more
important effect on their spatial behavior, in many studies,
centres and bandwidths of RBFs were determined separately
by using different solver methods. Hardy and Göpfert (1975)
estimated the best depth of base functions based on the
number of RBFs and the extent of the study area on a sphere.
Marchenko (1998) located the radial multi-poles below data
points and optimized their horizontal locations using the
sequential multi-pole algorithm. He determined the depth
and order of each radial multi-pole whenever the covariance
function of the signal in the vicinity of data point was rather
matched to the shape of base functions. Klees and Wittwer
(2007) and Klees et al. (2008) designed a data adaptive
method to fix the centres and depths of RBFs. They located
the RBFs in equiangular grids and used the generalized cross-
validation technique to evaluate the depths as a function of
signal variation and data distribution. Tenzer and Klees
(2008) investigated the performance of the RMS minimiza-
tion technique as an alternative to the generalized cross-
validation technique in the optimization of the RBF depths.
They found that both techniques provide very similar
results; however, they showed that the generalized cross-
validation technique is less efficient than the RMS minimi-
zation technique in the processing of large datasets.

The determination of the optimal number of base
functions is a fundamental task in the gravity field
approximation with RBFs. Selecting too many RBFs causes
an over-parameterization, while a low number of RBFs
cannot model the signal variations properly. The number
of RBFs depends on the applied procedure for solving the
unknown parameters; optimizing the 3D position of RBFs
simultaneously by using a non-linear solver method can
reduce their number (see Barthelmes and Dietrich, 1991;
Safari et al., 2014) while using different solver methods for
optimizing the centres, depths, and magnitudes requires
more RBFs (see Klees et al., 2008; Tenzer and Klees, 2008).
Almost in all studies related to RBF parameterization of the
gravity field, the focus was given only to the optimization
of unknown parameters, while the number of RBFs was
determined empirically or with the use of different types of
gravimetric data. Tenzer and Klees (2008) suggested that
the number of RBFs should be at least 20–30% of the
number of observations in flat to hilly regions. In
mountainous regions, Tenzer et al. (2012) found a typical
number of 70% for this ratio. However, they demonstrated
that applying topographic corrections to the gravity data
reduces this number to about 30%. They also claimed that
after finding a suitable number of RBFs, adding more RBFs
does not have a significant effect on the model’s accuracy.
Safari et al. (2014) used different types of gravimetric data
at the same time to find the optimal number of RBFs. They
claimed that in gravity field modeling with RBFs using
gravity anomalies as input data, the number of RBFs can be
considered as a function of the RMS of residual height
anomalies. However, they did not offer an empirical
methodology, but the disadvantage of this method is
that it requires different types of gravimetric data for

validation of the obtained results, which might not be
always available.

In the inversion of gravity data to the quasi-geoid model
using RBFs, a systematic bias between the geometric
height anomalies (observed at GPS/leveling points) and
gravimetric height anomalies (modeled by RBFs) is
inevitable (Foroughi and Tenzer, 2014). Klees et al.
(2008), for instance, reached a large bias of about 0.5 m.
This bias might be the result of achieving a local minimum
solution on gravity data and not the global one, and can be
minimized by applying a reliable data processing ap-
proach. In this study, a data processing scheme is designed
to justify the 3D position of RBFs and their magnitudes,
while it simultaneously optimizes the number of base
functions. This strategy is proposed based on the direction
of the changes in parameters and spectral content of
gravimetric signal. In this methodology, the Levenberg–
Marquardt algorithm is chosen as the non-linear optimi-
zation method that was proposed by Marquardt
(1963). The solution of this algorithm might converge to
a local minimum and may not necessarily be the global
minimum. However, most of the iterative regularization
methods are sensitive to the initial values of unknown
parameters and appropriate initial values can minimize
this effect (Ortega and Rheinboldt, 1970). For this purpose,
the RMS minimization technique is utilized to find the
proper initial values of RBF depths, while the RBF centres are
initialized in equiangular grids. It is worth mentioning that
the Levenberg–Marquardt algorithm has been widely used
in the gravity field modeling with RBFs (for instance, see
Foroughi et al., 2013; Safari et al., 2014; Weigelt et al., 2010).
In these studies, the regularization parameter was initial-
ized with an arbitrary constant value and sequentially
updated by a constant factor, which increased the number of
iterations significantly. In order to improve the performance
of the proposed data processing scheme, we modify the
Levenberg–Marquardt algorithm by providing an appropri-
ate formula for the initialization of the regularization
parameter and suggesting a specific updating rule for this
parameter. In order to evaluate the performance of the
proposed methodology, synthetic gravity anomaly data
are utilized for the implementations. For the localization of
the gravity observations required for a regional modeling,
the Remove-Compute-Restore (RCR) technique is applied to
subtract the global effect of the gravity field before
computations and restore it after finding the solution.
Based on the numerical experiments, the following refine-
ments are achieved due to the proposed data processing
strategy and applied modifications to the optimization
algorithm:

� achieving a reliable approach on choosing the optimal
RBF parameters and their optimal number;
� obtaining an accurate approximation of the quasi-geoid

model;
� reducing the systematic bias between geometric and

gravimetric height anomalies to a few centimeters;
� obtaining all the results after several iterations.

This paper is organized in six sections. In Section 2, the
RBF parameterization is described in the context of gravity
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