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Quantitative predictions of past climate states based on calibrated proxy data are key to the reconstruction of
palaeoenvironments and are essential for climate model validation. Magnetic climofunctions have been used
to make predictions concerning past climates based on soil magnetic mineral assemblages. For example, de-
tailed time series of Quaternary mean annual precipitation and palaeoprecipitation gradients across wide
geographic regions have been predicted from the rock magnetic properties of Chinese loess and palaeosol
units. Quantitative prediction requires full assessment of the uncertainties associated with predictions. How-
ever, little attention has been given to this important aspect of climofunction prediction. We present an anal-
ysis of an ensemble of published rock magnetic climofunctions and estimate the uncertainty of the associated
predictions. We find that existing climofunctions have associated uncertainties that are so large that their
subsequent predictions are effectively invalid. Thus, palaeoprecipitation reconstructions must be treated
with extreme caution. In the future climofunctions that are constrained geologically through the inclusion
of theoretical models of soil development may provide predictions with lower uncertainties.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Numerous studies have demonstrated a relationship between cli-
mate and the magnetic properties of soils (see Orgeira et al. (2011)
and Liu et al. (2012) for recent reviews). Different mechanisms,
such as magnetic mineral formation during natural fires (Le Borgne,
1960; Kletetschka and Banerjee, 1995) and mixing of magnetic and
non-magnetic sediments (Kukla et al., 1988; Porter et al., 2001),
have been proposed to explain this relationship. It is now widely
agreed, however, that the inorganic formation of secondary ferrimag-
netic minerals during pedogenesis is responsible for the magnetic
enhancement of soils (Maher and Taylor, 1988; Zhou et al., 1990;
Maher and Thompson, 1991; Zheng et al., 1991). A link therefore ex-
ists between the climate parameters (e.g., precipitation, evaporation
and ambient temperature variations) that influence soil formation
and the properties of pedogenically enhanced magnetic mineral as-
semblages. Soil formation is, however, a complex process and the
mechanisms that control the formation and destruction of magnetic
minerals during pedogenesis remain a matter of debate (Orgeira
et al., 2011; Liu et al., 2012).

Studies of links between magnetic properties and soil formation go
beyond solely attempting to understand pedogenic processes. By quan-
tifying the relationship between modern climate parameters and care-
fully selected magnetic properties of recent soils, it may be possible to
develop a calibrated transfer function with which to make quantitative

palaeoclimate predictions. Such magnetic “climofunctions” were
pioneered by Maher et al. (1994), who considered the relationship be-
tween magnetic susceptibility and rainfall for loess–palaeosol se-
quences of northwest China. To isolate the portion of the magnetic
mineral assemblage attributable to soil formation, Maher et al. (1994)
used the pedogenic magnetic susceptibility (χped), which is simply the
difference between the magnetic susceptibility (χ) of pristine parent
material (loess) and pedogenically enhanced subsoil. By comparing
χped of 9modern soils from the Chinese Loess Plateauwithmeteorolog-
ical data, Maher et al. (1994) showed that the logarithm of χped corre-
lates strongly with mean annual precipitation (MAP), whilst other
factors, such as temperature and the time required for soil develop-
ment, are of secondary importance. By assuming that this relationship
does not vary with time, the derived climofunction was applied to an-
cient soils to make quantitative predictions of past rainfall levels and
precipitation gradients across the Chinese Loess Plateau (Maher et al.,
1994; Maher and Thompson, 1995; Maher and Hu, 2006).

Subsequent studies have adopted the magnetic climofunction
concept of Maher et al. (1994) and have investigated the relationship
between the magnetic properties of modern soils and the rainfall/
temperature regime in which they developed. Some studies have
used less discriminative magnetic properties, such as bulk magnetic
susceptibility (Balsam et al., 2011), whilst others have developed spe-
cific parameters to quantify the abundance of fine-grained ferrimag-
netic minerals that are characteristic of pedogenesis (Geiss and
Zanner, 2006; Geiss et al., 2008). Irrespective of their differences in
approach, the motivation behind these studies is to make quantitative
predictions of past climate states based on climofunctions derived
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from the magnetic properties of modern soils. Limited geological con-
sideration has been given to the form of the climofunctions. Instead,
empirical model selection has been adopted by identifying magnetic
parameters that exhibit a strong correlation with rainfall and temper-
ature values.

Quantitative prediction of past climate states has involved deter-
mination of a regression-based calibration that links magnetic prop-
erties of modern soils to MAP or mean annual temperature (MAT)
(Maher et al., 1994, 2002; Han et al., 1996; Geiss et al., 2008; Balsam
et al., 2011). The calibration can then be inverted to determine a
climofunction with which the magnetic properties of ancient soils pro-
vide a basis to make predictions of the environmental conditions under
which a soil formed. The quality of empirical climofunctions is most
often assessed using the coefficient of determination (r2) between a
given magnetic parameter and MAP or MAT. Given that the aim of
climofunction development is to produce quantitative predictions, the
r2 statistic is difficult to interpret. For example, if a study quotes a
predicted MAP of 600 mm/yr obtained from a climofunction with r2=
0.7, the uncertainty on the predicted MAP is not apparent in mm/yr.
Some studies have attempted to quantify uncertainties associated with
predictions made from empirical climofunctions. Maher and Hu (2006)
and Balsam et al. (2011) presented errors in mm/yr calculated from
the estimated quality of the regression-based calibration. These authors
did not, however, consider additional uncertainties that arise when
making predictions for samples that were not included in the original
calibration data set.

The aim of this study is to demonstrate an approach with which the
uncertainty associated with climofunction predictions can be quanti-
fied. Through the use of so-called discrimination intervals (Lieberman
et al., 1967), the predictive power of a given climofunction can be
judged. As was the case in the original cited studies, we focus on a sta-
tistical analysis that does not take into account geological constraints.
The key issue is that quantification of uncertainties associated with
climofunctions is essential if meaningful comparisons between predict-
ed climate states are to be made.

2. Materials and methods

We analyse here a number of published climofunctions. These
climofunctions all aim to predict MAP and are considered in sequence
according to the complexity of the magnetic parameter used. As men-
tioned above, we do not consider the appropriateness of a given mag-
netic parameter to predict past rainfall levels. We focus instead on the
empirical predictive power that is claimed to be associated with each
climofunction in the respective cited studies.

Two data sets are taken from Balsam et al. (2011), who considered
the relationship between the logarithm of χ in modern soils andMAP.
The first data set is composed of data from Mali (n=38), whilst the
second data set comprises the western subtransect (n=19) subset
of the Mali data.

Maher et al. 1(994) developed a climofunction for the Chinese
Loess Plateau (n=9) to predict MAP from the logarithm of χped.
This work was later extended by Maher et al. (2002) to include addi-
tional soils from the Chinese Loess Plateau (n=31, Porter et al.
(2001)) and the Russian steppe (n=22). From a statistical analysis,
Maher et al. (2002) demonstrated that their models that relate MAP
and χped in Chinese and Russian soils match closely.

A study of modern loessic soils (n=76) from the midwestern
United States by Geiss et al. (2008) related linearly the magnetic
enhancement of soil horizons (quantified by the ratio of susceptibility
of anhysteretic remanent magnetisation to isothermal remanent
magnetisation, χARM/IRM) to MAP. A statistical analysis of χARM/IRM
revealed that it was a better predictor of regional MAP than any
other previously studied magnetic parameter (Geiss et al., 2008).

Proxy calibration is assessed here for all of the selected data sets
using the same form of climofunction used by the authors of the

original studies (e.g., linear, log-linear). On the basis of these calibra-
tion models the power of a given magnetic parameter to predict MAP
is then assessed using discrimination intervals (Lieberman et al.,
1967).

2.1. Proxy calibration

Climofunction estimation is based on a process of inverse calibra-
tion, which allows predictions of an independent variable on the basis
of a dependent variable (Osborne, 1991). In such calibration problems
it is essential to consider if the derived climofunction will be used
only once (i.e., to predict palaeoprecipitation from a single sample)
or repeatedly (i.e., multiple palaeoprecipitation predictions from a
collection of samples). It is reasonable to assume that after a
climofunction is developed it will be used repeatedly to make numer-
ous predictions of palaeoprecipitation at single or multiple locations
as a function of time (Maher and Thompson, 1995). We therefore em-
ploy the approach of Lieberman et al. (1967) where the number of
predictions to be made on the basis of an inverse calibration is consid-
ered to be arbitrarily large.

For n calibration data points included in the development of a
climofunction, it is assumed that the dependent parameter, y, can
be related to the independent parameter, x, by the linear regression
model:

y ¼ aþ bxþ �; ð1Þ

where � represents a collection of error terms. Theordinary least-squares
estimator of the regression coefficients is given by:

b ¼ ∑ x−�xð Þ y−�yð Þ
∑ x−�xð Þ2 and a ¼ �y−b�x: ð2Þ

Predictions of y for the independent parameter values in x are
then given by:

ŷ ¼ aþ bx: ð3Þ

The misfit between the data (y) and the regression predictions (ŷ)
can be quantified by the estimated residual variance:

s2 ¼ ∑ y−ŷð Þ2
n−2

: ð4Þ

The relationship between x and y obtained from the n calibration
data points forms a climofunction from which numerous predictions
of x will be made on the basis of y. This relationship is, however,
only an estimate of the true relationship because it is based on a sta-
tistical sample of n points rather than the entire population. Given
this limitation, it is essential to assess the uncertainty associated
with the estimated regression line. Working and Hotelling (1929)
showed how a confidence band for the location of the true regression
line (i.e., that of the entire population) can be determined across the
range of the data. This band is based on the estimated regression line
and is constructed in a point-wise manner. For example, at the point
xa the confidence band is:

ŷa � 2F 1−α;2;n−2ð Þ
n o1

2s
1
n
þ xa−�xð Þ2
∑ x−�xð Þ2

 !1
2

; ð5Þ

where F(1−α;2,n−2) is the value of a F distribution with (2,n−2) de-
grees of freedom at the 1−α level. For a given value of α there is a
1−α probability that the confidence band contains the true regres-
sion line for the population.

A second source of uncertainty originates from the ability of
the parameter y to make predictions of x. A non-zero value of s2
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