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a  b  s  t  r  a  c  t

This  paper  presents  a novel  method  to derive  grassland  aboveground  biomass  (AGB)  based  on  the  PRO-
SAILH  (PROSPECT  + SAILH)  radiative  transfer  model  (RTM).  Two  variables,  leaf  area  index  (LAI,  m2m−2,
defined  as  a one-side  leaf  area  per  unit  of horizontal  ground  area)  and  dry  matter  content  (DMC,  gcm−2,
defined  as  the  dry  matter  per  leaf  area),  were retrieved  using  PROSAILH  and  reflectance  data  from  Landsat
8  OLI  product.  The  result  of  LAI  × DMC  was  regarded  as the  estimated  grassland  AGB according  to  their
definitions.  The  well-known  ill-posed  inversion  problem  when  inverting  PROSAILH  was  alleviated  using
ecological  criteria  to  constrain  the simulation  scenario  and  therefore  the  number  of  simulated  spectra.
A  case  study  of  the  presented  method  was  applied  to a plateau  grassland  in China  to  estimate  its  AGB.
The  results  were  compared  to  those  obtained  using  an  exponential  regression,  a partial  least  squares
regression  (PLSR)  and  an  artificial  neural  networks  (ANN).  The  RTM-based  method  offered  higher  accu-
racy  (R2 =  0.64  and RMSE  =  42.67 gm−2) than  the  exponential  regression  (R2 = 0.48  and  RMSE  =  41.65  gm−2)
and  the  ANN  (R2 = 0.43  and  RMSE  = 46.26  gm−2). However,  the proposed  method  offered  similar  perfor-
mance  than  PLSR  as presented  better  determination  coefficient  than  PLSR  (R2 =  0.55)  but  higher  RMSE
(RMSE  = 37.79  gm−2). Although  it is  still necessary  to test  these  methodologies  in other  areas,  the  RTM-
based  method  offers  greater  robustness  and  reproducibility  to  estimate  grassland  AGB at  large  scale
without  the  need  to collect  field  measurements  and therefore  is  considered  the  most  promising  method-
ology.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Aboveground biomass (AGB) determines
biosphere–atmosphere interactions, and it is key to our under-
standing of the terrestrial carbon balance (Anaya et al., 2009;
Cartus et al., 2012; He et al., 2015; Houghton, 2005; Liu et al.,
2015; Su et al., 2016). A spatial and temporal assessment of AGB at
different stages can be used to determine which processes drive
changes in the global carbon cycle and can help land managers to
develop strategies for climate change mitigation (Yan et al., 2015).
Although field surveys provide the most accurate method for
obtaining grassland AGB, they are too time-consuming and costly
over large areas (Paul et al., 2013; Xie et al., 2009). Remote sensing
can provide a uniquely effective and efficient means of achieving
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this end due to its high temporal and spatial resolution image of
large landscape observation (Barrachina et al., 2015; Chen et al.,
2015; Fassnacht et al., 2014; Lu, 2006).

Different methods exist to estimate AGB using different remote
sensing data: (i) light detection and ranging (LiDAR) data (Chen,
2015; Tsui et al., 2012), (ii) synthetic aperture radar (SAR) data
(Baghdadi et al., 2015; Englhart et al., 2011; Liu et al., 2015), (iii)
optical satellite data (Cho et al., 2007; Cho and Skidmore, 2009;
Ramoelo et al., 2015; Doraiswamy et al., 2005; Liu et al., 2010; Tian
et al., 2012), and (iv) multi-sensor data (Clevers and van Leeuwen,
1996; Koch, 2010; Li et al., 2015; Su et al., 2016; Zhang et al.,
2014). LiDAR is an active sensing technology which uses a laser
(light amplification by stimulated emission of radiation) to trans-
mit  a light pulse towards a target and a receiver to measure the
backscattered or reflected light from that target (Cho et al., 2012;
Lefsky et al., 2005). The LiDAR data have shown great potential for
the retrieval of vegetation biophysical parameters that are largely
related to AGB, such as vegetation height, volume and structure
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(Lefsky et al., 2005; Zolkos et al., 2013). However, LiDAR data are
generally used for forest and shrub AGB mapping (Boudreau et al.,
2008; Cho et al., 2012; Lefsky et al., 2005; Zolkos et al., 2013)
and as far as we know there are not studies focused on grassland
AGB. Moreover, it is not suitable in applications for large regions
because wall-to-wall coverage of large areas with LiDAR is imprac-
tical (Cartus et al., 2012; Liu et al., 2015). SAR data also showed
great potential for AGB mapping by using its intensity information,
polarized information and phase information, such as the devel-
opment of polarimetric SAR (PolSAR), SAR interferometry (InSAR)
and polarimetric SAR interferometry (PolInSAR) (Cartus et al., 2012;
Cloude and Papathanassiou, 1998; Liu et al., 2015; Solberg et al.,
2013). Svoray and Shoshany (2002) derived biomass in a semi-arid
grassland region by modifying the water-cloud model. Moreau and
Le Toan (2003) utilized SAR data as a function of plant biomass at
homogeneous areas. However, the use of SAR data remains chal-
lenging due to its high costs and lack generality for the application
of the empirically based equations to large scale. Moreover, the
SAR data are hypersensitive to the underlying surface in grasslands,
which will sufficiently influence the accuracy of AGB estimations
(Hajj et al., 2014).

With regard to the use of optical satellite data to estimate AGB,
the primary methods are empirical approaches, including vegeta-
tion indices regression (Anderson et al., 1993; Zheng et al., 2004,
2007), partial least squares regression (PLSR) (Cho et al., 2007), arti-
ficial neural networks (ANN) (Xie et al., 2009) and machine learning
algorithms (Clevers et al., 2007). The vegetation indices regression
method was to establish the relationship (such as linear fitting,
exponential regression, polynomial regression, etc.) between veg-
etation indices and vegetation variables of interest, and with this
relationship, the target variables can be derived. PLSR is a method
for relating two data matrices, X and Y, by a linear multivariate
model, but goes beyond traditional regression in that it models also
the structure of X and Y. This method derives its usefulness from
its ability to analyze data with many, noisy, collinear, and even
incomplete variables in both X and Y (Wold et al., 2001). The ANN
and machine learning algorithms need a training database consist-
ing of canopy reflectance spectra together with the corresponding
vegetation parameters, and their performance largely relies on the
training database and the training process itself (Houborg et al.,
2009). Generally, these methods are empirical and indirect (Koch,
2010) as they relate AGB with other directly retrieved vegetation
parameters, such as height and crown closure. Consequently, these
methods are limited to a certain region and time and, being indi-
rect, they may  introduce extra uncertainties in the estimation of
AGB.

Another method for the estimation of AGB is the model-
data assimilation approach which incorporates field and multiple
remote sensing data into dynamic mechanistic models, such as
the CERES-Wheat (Godwin et al., 1989) and World Food Studies
(WOFOST) model (Diepen et al., 1989; Ma  et al., 2013a, 2013b).
This approach has increasingly been used for crop growth moni-
toring and AGB or yield prediction, with considerable success (He
et al., 2015; Huang et al., 2016, 2015a). However, these dynamic
mechanistic models are hard to parameterize due to the large
requirement of input parameters, and the iterative optimizing
process is time-consuming, especially for the four-dimensional
variational algorithm (4D-Var) (Quan et al., 2015b; Talagrand and
Courtier, 1987).

Optical satellite data and radiative transfer model (RTM) inver-
sion techniques have been widely used to retrieve vegetation
biophysical and biochemical variables, such as leaf area index
(LAI) (Houborg et al., 2007; Quan et al., 2014), canopy water
content (Quan et al., 2015a), canopy or leaf chlorophyll content
(Darvishzadeh et al., 2008b; Yin et al., 2016) and fuel moisture con-
tent (Quan et al., 2015b; Yebra and Chuvieco, 2009b; Yebra et al.,

2013). RTM inversion techniques have proven to be a promising
way to retrieve bio-physical and bio-chemical variables because
compared with the empirical methods, RTM are more universal
as they are based on physical laws that provide explicit relations
between canopy properties and spectra (Houborg et al., 2009, 2007;
Quan et al., 2015a; Yebra et al., 2013, 2008). Thus, these RTM-
based approaches have the advantage of reproducibility. However,
to date, no study has explored the use of RTM inversion techniques
for the estimation of grassland AGB.

In this paper, a novel method based on the PROSAILH (PROSPECT
and SAILH) RTM (hereafter referred as RTM-based method) was
explored to estimate grassland AGB from two  model parameters:
LAI (m2m−2, defined as a one-side leaf area per unit of horizontal
ground area) and dry matter content (DMC, gcm−2, defined as the
dry matter per leaf area). To test the performance of this method
vs. the traditional empirical methods, the exponential regression,
PLSR and ANN were also implemented. A case study of the proposed
methods was applied to a plateau grassland in China to estimate its
AGB, and the results were validated using the field measurements.

2. Materials and methods

2.1. Study area and data

2.1.1. Study area and sampling
The study area is the Qinghai Lake watershed, located in Qing-

hai Province, China (36◦ 15′–38◦ 20′ N, 97◦ 50′–101◦ 22′ E) (Fig. 1).
This watershed is a closed inland basin surrounded by mountains,
with an area of approximately 29,600 km2. The watershed ranges
in elevation from 3194 m to 5174 m with annual mean temper-
atures between −1.10 ◦C and 0.80 ◦C. The annual precipitation is
between 324.50 mm and 412.80 mm,  and the majority of the pre-
cipitation falls during the period from May  to September. Due to
its unique geographic location, geomorphic features, climate con-
ditions and saline-alkali soil, the Qinghai Lake watershed forms a
complex habitat with diverse grass species.

The field surveys were carried out in late July 2014 and early
August 2015 in collaboration with the Qinghai Ecosystem Remote
Sensing Monitoring Centre (http://www.qherc.org/). The sampling
plots were selected based on the image of 1:100,0000 grassland
cover types in Qinghai province, China. A total of 135 30 × 30 m
plots were sampled. A GPS was used to locate their geographical
positions. For each plot, LAI was  obtained from fish-eye pho-
tographs and the CAN-EYE V6.3.8 analysis software. Three pictures
were taken in the diagonal direction of each plot. In each plot,
3 subplots (0.5 × 0.5 m)  were randomly selected to destructively
sample the aboveground grass by removing all grass to the ground
level. The collected samples were transported to the laboratory,
oven-dried for 24 h at 105 ◦C (Matthews, 2010) and weighed (dry
weight).

2.1.2. Satellite data and pre-processing
Landsat 8 Operational Land Imager (OLI) products acquired

within the field survey periods were used as the source of
reflectance data to carry out the RTM inversion. The Landsat 8 OLI
sensor images the Earth every 16 days at a pixel size of 30 m × 30 m
(same size as the field plots). The data were downloaded from the
United States Geological Survey (USGS) (http://glovis.usgs.gov/). A
total of five Landsat-8 OLI scenes per date were needed to com-
pletely cover the Qinghai Lake watershed. Only images covered by
less than 70% cloud were selected and downloaded. The images
were atmospherically corrected using the FLAASH tool in the ENVI
(version 5.2) image processing software (Matthew et al., 2000).
FLAASH is structured based on the MODTRAN (MODerate resolu-
tion atmospheric TRANsmission) atmospheric RTM, which can be
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