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a  b  s  t  r  a  c  t

Different  pixel-based,  object-based  and subpixel-based  methods  such  as  time-series  analysis,  decision-
tree,  and  different  supervised  approaches  have  been  proposed  to conduct  land  use/cover  classification.
However,  despite  their  proven  advantages  in  small  dataset  tests,  their  performance  is  variable  and  less  sat-
isfactory  while  dealing  with  large  datasets,  particularly,  for  regional-scale  mapping  with  high  resolution
data  due  to  the  complexity  and  diversity  in  landscapes  and land  cover  patterns,  and  the  unacceptably  long
processing  time.  The  objective  of  this  paper  is  to  demonstrate  the  comparatively  highest  performance
of  an  operational  approach  based  on integration  of multisource  information  ensuring  high mapping
accuracy  in  large areas  with  acceptable  processing  time.  The  information  used  includes  phenologically
contrasted  multiseasonal  and multispectral  bands,  vegetation  index,  land  surface  temperature,  and  topo-
graphic features.  The  performance  of  different  conventional  and  machine  learning  classifiers  namely
Malahanobis  Distance  (MD),  Maximum  Likelihood  (ML),  Artificial  Neural  Networks  (ANNs),  Support  Vec-
tor  Machines  (SVMs)  and  Random  Forests  (RFs)  was  compared  using  the  same  datasets  in  the  same  IDL
(Interactive  Data  Language)  environment.  An  Eastern  Mediterranean  area  with  complex  landscape  and
steep climate  gradients  was  selected  to  test  and  develop  the  operational  approach.  The  results  showed
that  SVMs  and  RFs  classifiers  produced  most  accurate  mapping  at local-scale  (up  to  96.85%  in Overall
Accuracy),  but  were  very  time-consuming  in  whole-scene  classification  (more  than  five  days  per  scene)
whereas  ML fulfilled  the task  rapidly  (about  10 min  per scene)  with satisfying  accuracy  (94.2–96.4%).
Thus,  the  approach  composed  of integration  of seasonally  contrasted  multisource  data  and  sampling
at  subclass  level  followed  by  a ML  classification  is a suitable  candidate  to become  an  operational  and
effective  regional  land  cover  mapping  method.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Land cover (LC) and land use (LU) data are fundamental inputs
for a wide range of environmental planning, management and
research applications. Nowadays, LC mapping mostly relies on
remote sensing building on more than 40 years of scientific
research and technological developments from local to global scale
(Atkinson and Tatnall, 1997; Chen et al., 2015; DeFries et al., 1998;
Friedl et al., 2002; Gong et al., 1992, 2013; Hansen et al., 2000;
Haralick et al., 1973; Wu and Zhang, 2003; Wu  et al., 2013a). How-
ever, accuracy and reliability may  become a challenge when using
high resolution data for regional and global mapping. For example,
as reported by Gong et al. (2013) concerning their global LC map-
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ping using Landsat data, the Overall Accuracies (OAs) were below
70% for all continental-scale and below 75% for most national-scale
maps except for some countries like Algeria, Saudi Arabia, Libya
where LC patterns are simple.

The conventional classification approaches adopted pattern
recognition techniques including both supervised and unsuper-
vised algorithms, assuming that the study area is composed of a
number of unique internally homogenous classes that are mutu-
ally exclusive (Townshend, 1984). However, such assumption is not
applicable to most natural or semi-natural areas where there are
mixed pixels (Adams et al., 1995; Atkinson, 2005; Hill and Schutt,
2000; Van Der Meer, 1995), and especially LC types exist as continua
rather than as a mosaic of discrete classes (Foody et al., 1992; Kent
et al., 1997; Wu  and Zhang, 2003). As a result, the classes intergrade
showing a low degree of separability, and cannot be distinguished
by means of sharp boundaries (Foody et al., 1992). The separability
of classes can be evaluated by the Jeffreys-Matusita Distance (JMD)
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according to Swain and King (1973) and Richards and Jia (2006).
For the pair of classes i and j, this distance can be expressed as:

JMDij = 2(1 − e−˛) (1)
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Ci—the covariance matrix of class i; �i—the mean vector of class i;
ln—the natural logarithm function; T—the transposition function;
and |Ci|—the determinant of Ci; the same meanings for the counter-
parts of class j. JMD  ranges from 0 to 2.0; when it is below 1.0, two
classes (of a class-pair) are not separable; when it is between 1.0
and 1.5, two classes are separable but with confusion, and when it
is between 1.5 and 1.9, two classes are clearly separable; only when
JMD is above 1.9 the class-pair is completely separable.

For poorly separable classes the accuracy of classification is the
major problem in LC mapping. For this purpose, a number of authors
have explored the possibility to improve mapping accuracy by tak-
ing into account the texture (Gong et al., 1992; Haralick et al., 1973;
Zhang, 2001) or by object-based segmentation (Mao  and Jain, 1992;
Blaschke, 2010; Pu et al., 2011) or by combining both pixel- and
object-based approaches (Huth et al., 2012; Chen et al., 2015). In
addition to the traditional unsupervised (e.g., IsoData, K-Means)
and supervised algorithms, e.g., Mahalanobis Distance (MD) and
Maximum Likelihood (ML), a number of authors have introduced
machine learning algorithms that can capture the non-parametric
signatures of classes such as Artificial Neural Networks (ANNs,
Atkinson and Tatnall, 1997; Benediktsson et al., 1990; Kavzoglu
and Mather, 2003), Support Vector Machines (SVMs, Foody and
Mathur, 2004; Huang et al., 2002; Kavzoglu and Colkesen, 2009;
Vapnik and Lerner, 1963) and Random Forests (RFs, Breiman, 2001;
Rodriguez-Galiano et al., 2012; Waske et al., 2012).

For mixed pixels, various subpixel processing techniques have
been proposed to decompose land cover fraction or to improve
LC mapping accuracy, e.g., linear spectral unmixing (Adams et al.,
1986; Foody and Cox, 1994; Hill and Schutt, 2000; Lu and Weng,
2004; Smith et al., 1990; Van Der Meer, 1995), linear optimization
(Verhoeye and De Wulf, 2002), Hopfield neural network (Tatem
et al., 2002), pixel-swapping (Atkinson, 2005), subpixel/pixel
attraction (Mertens et al., 2006), etc.

Some authors have also integrated a set of single or time-series
vegetation indices (VIs) such as NDVI (Normalized Difference Vege-
tation Index) or EVI (Enhanced Vegetation Index) and land surface
temperature (LST) to undertake LC mapping (Friedl et al., 2002;
Loveland et al., 2000; Lu et al., 2014). Furthermore, topographic fea-
tures have been employed in LC classification to improve accuracy
(Benediktsson et al., 1990; Rodriguez-Galiano et al., 2012), particu-
larly by the ESA-funded DesertWatch project (Pace et al., 2006; ESA,
2008), based on the assumption that landscape features restrain to
a certain extent land use or land cover. For example, irrigated land
generally occurs in flat to gently sloping land. Phenological pat-
terns and features (Zhu and Wan, 1963) have also played a role in
LC mapping (Friedl et al., 2002; Jia et al., 2014; Lu et al., 2014). The
above mentioned DesertWatch project and Rodriguez-Galiano et al.
(2012) used paired season-contrasted spring and summer images
instead of time-series data to enhance LC classification.

The goal of this research is to demonstrate the performance
of a LC mapping procedure based on the integrated use of the
phenology-contrasted information including multispectral (MS)
bands of images, GDVI (Generalized Difference Vegetation Index)
which is more sensitive than other VIs for dryland characterization
(Wu,  2014), LST, and topographic features extracted from a Digi-
tal Elevation Model (DEM), and to compare it with that of some

other widely adopted supervised approaches. The specific objective
is to quantify the achieved improvement in terms of separability of
classes, accuracy of the classification, and processing time by inte-
gration of multisource high resolution data for area with complex
landscape.

2. Data and methods

2.1. Study area

The study area is located in the Eastern Mediterranean Region
and coincides with the area covered by Landsat scenes with
path/row numbers of 174/35–174/37 (Fig. 1). This area was cho-
sen because it is a dryland characterized by steep climatic gradients
with various landforms and complex LC patterns, thus a challenging
site for remote sensing-based LC mapping. Two subset sites with
contrasting LC and LU characteristics were also defined (Fig. 1) for
experimental purposes as explained below.

In the study area rainfall is mostly concentrated between
November and April and ranges from around 650 mm on the
western coastal slopes to less than 100 mm in the eastern dry
rangelands and deserts. Three main landforms are respectively,
from the west to the east, the coastal plains and piedmont, the
mountain–valley–mountain sequence of the north-south stretch-
ing coastal ranges, and the eastern plateau. Natural vegetation
cover mainly consists of coniferous and broadleaf forests in the
highlands, shrublands and maquis in the mountain slopes, and
herbaceous rangelands in the eastern hills and plateau (Wu,  2014).

Irrigation is mainly concentrated in the Aleppo Plain, Orontes
and Litani watersheds and Jordan River valley. The main spring
crops are irrigated wheat and vegetables, and rainfed barley,
whereas summer crops are irrigated cotton, maize, sunflower,
sesame, water melon and vegetables. Olive is widespread in rainfed
areas, interleaved with fig and pistachio. Orchards including citrus,
apple, cherry, peach, etc., are mainly distributed in the western
coastal plains and slopes. Date, banana and vineyards are mostly
present in the Bekaa and Jordan River valleys. The major land
use/cover classes of the study area are summarized in Table 1.

In Table 1 the category “Conifers” does not only include
monospecific pine and/or cedar stands, but also mixed formations
including broadleaved species. The distinction between forests
(Conifers and Broadleaf) and “Woodland” or “Woody Shrubland”,
is based on the FAO Land Cover Classification System (LCCS, Di
Gregorio and Jansen, 2000): forests have tree canopy cover (CC)
above 60%, whereas CC is between 20 and 60% for woodlands and
less than 20% for sparse woodlands (Wu  et al., 2013b). Since sparse
woody formations are generally used as grazing land in the study
area, this class was  considered as part of the “Rangelands”.

2.2. Data

Landsat 5 TM (Thematic Mapper) spring (01 May  2007) and
summer (21 August 2007) images were acquired for the scene
174/35. Landsat 8 OLI (Operational Land Imager) and TIRS (Ther-
mal  Infrared Sensor) data were obtained for the scenes 174/36 (02
April 2014 and 24 August 2014) and 174/37 (18 April 2014 and
24 August 2014). The two dates represent respectively the spring
vegetative maximum and the summer minimum, they are thus
highly contrasted. Extensive ground-truthing work was  conducted
in the period 2007–2011 in Syria and in 2013–2014 in Lebanon and
Jordan (GPS locations in Fig. 1). Google Earth was used as a comple-
mentary source for areas not covered by field work. SRTM (Shuttle
Radar Topography Mission) DEM data (90 m in resolution) were
obtained and used to generate elevation (E), slope (S), and aspect
(A) information.
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