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a  b  s  t  r  a  c  t

With  current  and  upcoming  imaging  spectrometers,  automated  band  analysis  techniques  are  needed  to
enable efficient  identification  of  most  informative  bands  to facilitate  optimized  processing  of  spectral
data  into  estimates  of  biophysical  variables.  This  paper  introduces  an  automated  spectral  band  analysis
tool  (BAT)  based  on  Gaussian  processes  regression  (GPR)  for the  spectral  analysis  of  vegetation  properties.
The GPR-BAT  procedure  sequentially  backwards  removes  the  least  contributing  band  in  the  regression
model  for a given  variable  until  only one  band  is kept.  GPR-BAT  is  implemented  within  the  framework
of  the  free  ARTMO’s  MLRA  (machine  learning  regression  algorithms)  toolbox,  which  is dedicated  to  the
transforming  of  optical  remote  sensing  images  into  biophysical  products.  GPR-BAT  allows  (1)  to identify
the  most  informative  bands  in relating  spectral  data  to a biophysical  variable,  and  (2)  to  find the  least
number  of bands  that  preserve  optimized  accurate  predictions.  To illustrate  its utility,  two  hyperspectral
datasets  were  analyzed  for  most  informative  bands:  (1)  a field hyperspectral  dataset  (400–1100  nm at
2  nm resolution:  301 bands)  with  leaf  chlorophyll  content  (LCC)  and green  leaf  area  index  (gLAI)  collected
for  maize  and  soybean  (Nebraska,  US);  and  (2)  an airborne  HyMap  dataset  (430–2490  nm:  125  bands)
with  LAI  and canopy  water  content  (CWC)  collected  for a variety  of  crops  (Barrax,  Spain).  For  each  of
these  biophysical  variables,  optimized  retrieval  accuracies  can  be achieved  with  just  4  to  9 well-identified
bands,  and performance  was  largely  improved  over  using  all  bands.  A PROSAIL  global  sensitivity  analysis
was  run  to  interpret  the  validity  of these  bands.  Cross-validated  R2

CV (NRMSECV)  accuracies  for  optimized
GPR  models  were  0.79  (12.9%)  for LCC,  0.94  (7.2%)  for gLAI,  0.95  (6.5%)  for LAI  and  0.95  (7.2%)  for  CWC.
This  study  concludes  that  a wise  band  selection  of hyperspectral  data  is  strictly  required  for  optimal
vegetation  properties  mapping.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

A new era of optical remote sensing science is emerging with
forthcoming space-borne imaging spectrometer missions such as
EnMAP (Environmental Mapping and Analysis Program) (Guanter
et al., 2015), HyspIRI (Hyperspectral Infrared Imager) (Roberts
et al., 2012), PRISMA (PRecursore IperSpettrale della Missione
Applicativa) (Labate et al., 2009) and ESA’s 8th Earth Explorer
FLEX (Fluorescence Explorer) (Kraft et al., 2012). Having access to
operationally acquired imaging spectroscopy data with hundreds
of bands paves the path for a wide variety of monitoring appli-
cations, such as the quantification of structural and biochemical
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vegetation properties (Schaepman et al., 2009; Ustin and Gamon,
2010; Homolová et al., 2013).

Facing such exciting new technological opportunity poses,
however, an important methodological challenge. Imaging spec-
troscopy data include highly correlated and noisy spectral bands,
and frequently create statistical problems (e.g., the Hughes effect)
due to small sample sizes compared to the large number of avail-
able, possibly redundant, spectral bands. These characteristics may
lead to a violation of basic assumptions behind statistical models
or may  otherwise affect the model outcome. Models fitted with
such multi-collinear data sets are prone to over-fitting, and trans-
fer to other scenarios may  thus be limited. Naturally, these issues
affect the prediction accuracy as well as the interpretability of
the regression (retrieval) models (Curran, 1989; Grossman et al.,
1996). It may  therefore be desirable to reduce the spectral dimen-
sion, either through spectral dimensionality reduction techniques
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(e.g., Van Der Maaten et al., 2007; Arenas-García et al., 2013) or to
select particular spectral regions that are most helpful to describe
targeted biophysical variables. Apart from improving the fit and
processing speed of regression models, selecting specific spectral
regions may  allow clarification of the relationships of spectral sig-
natures to leaf and canopy optical properties while minimizing the
signal from secondary responses (Feilhauer et al., 2015).

From a pure statistical signal processing point of view, band
selection is cast as an optimization problem by which one wants to
select a subset of spectral bands that capture most of the informa-
tion for a particular problem. The search for the best bands out of
the available is known to be an NP-complete problem (it cannot be
solved in polynomial time) (Blum and Langley, 1998) and the num-
ber of local minima can be quite large. This poses both numerical
and computational difficulties.

Following a general taxonomy, band selection can be divided into
two major categories: filter methods (Liu and Motoda, 1998) and
wrapper (Kohavi and John, 1997) methods. Filter methods use an
indirect measure of the quality of the selected bands, so a faster con-
vergence of the regression algorithm is obtained. Wrapper methods
use the output of the regression algorithm as selection criteria. This
approach guarantees that in each step of the algorithm, the selected
subset improves the performance of the previous one. Filter meth-
ods might fail to select the right subset of bands if the used criterion
deviates from the one used for training the regression algorithm,
whereas wrapper methods can be computationally intensive since
the regression algorithm has to be retrained for each new set of
bands.

Spectral band selection for quantifying vegetation proper-
ties have used both filter and wrapper band selection methods.
Although there are many works of feature (spectral band) selection
in imaging spectroscopy and remote sensing, the vast majority of
them are related to classification problems (e.g., Bazi and Melgani,
2006; Archibald and Fann, 2007; Pal and Foody, 2010); very few are
concerned with regression (retrieval) problems, and in particular
with vegetation properties estimation.

On the one hand, filter methods have long been restricted
to the systematic calculation of all possible band combinations,
e.g. through generic vegetation indices where all bands are com-
bined into two-band indices and then applied to regression (e.g.,
Heiskanen et al., 2013; Rivera et al., 2014b). However, these are
brute-force techniques that usually do not go beyond searching for
(linear or polynomial) combinations of two or at most three bands
that maximize a fitting criterion (typically linear correlation). On
the other hand, wrapper methods have been also applied in the field
of chemometrics (Forina et al., 2004; Andersen and Bro, 2010). Here,
the focus is on non-parametric, multivariate regression methods.
These are full-spectrum statistical methods, and some of them have
band ranking properties through wrapper methods. There is a large
evidence of their successful performance. For instance, Feilhauer
et al. (2015) compared three multivariate regression techniques
(partial least square regression, random forests regression, and sup-
port vector regression) in their suitability for the identification and
selection of spectral bands. A multi-method ensemble strategy, i.e.
decision fusion, using these three methods was  proposed in order
to crystallize a more robust band selection. Among preferred uni-
variate regression methods we find random forests (Genuer et al.,
2010) mostly embedded in genetic algorithm procedures (Jung and
Zscheischler, 2013), or via permutation analyses.

A drawback of the above wrapper methods is that they are
often perceived as complex, e.g. they require software packages and
parameter tuning is mostly needed, and not all of these methods
performed equally well (Feilhauer et al., 2015). Using a regression
method with few hyper-parameters to be tuned is perhaps the
main problem here, and alternatives exist. Actually, various alter-
native non-parametric multivariate methods in the field of machine

learning regression algorithms (MLRAs) equally possess band
selection/ranking features, which some of them are very com-
petitive. Comparison studies have demonstrated that the above-
mentioned methods may  not always be most powerful regression
algorithms (Rivera et al., 2014a; Verrelst et al., 2012b, 2015c). In
these studies, it was shown that Gaussian processes regression
(GPR) (Rasmussen and Williams, 2006) outperformed other MLRAs
for the retrieval of biophysical variables from airborne and satel-
lite images (Verrelst et al., 2012b, 2015c). Of  interest is that GPR
also provides band ranking feature, which reveals the bands that
contribute most to the development of a GPR model (Camps-Valls
et al., 2016). Given its powerful performance, GPR may be a first
choice to exploit band ranking features.

Altogether, apart from above and a few more experimental stud-
ies (e.g., Verrelst et al., 2012b,a; Van Wittenberghe et al., 2014),
band ranking has not been fully exploited in retrieval applica-
tions. So far all these studies are experimental, and – while having
their scientific merits – none of these methods are directly appli-
cable to operational processing of hyperspectral data streams. For
instance, in view of optimized vegetation properties mapping, no
user-friendly software package enabling automated identification
of most important spectral bands for a given biophysical variable
is available to the broader community. Such kinds of tools may
become critical when forthcoming unprecedented hyperspectral
data stream will become freely accessible.

The objectives of this work are therefore threefold: (1) to
develop a GPR-based band analysis tool, further referred to as
“GPR-BAT”, that analyzes the band-specific information content of
spectral data for a given biophysical variable with little user inter-
action; (2) to demonstrate GPR-BAT’s utility by applying it to two
extensive hyperspectral datasets (biophysical variables and asso-
ciated spectra) in order to identify the optimal number of bands
and their spectral location; and finally, (3) to apply GPR-BAT to an
airborne hyperspectral image for automated and optimized vege-
tation properties mapping. GPR-BAT will be operated as a graphical
user interface (GUI) within ARTMO’s (automated radiative transfer
models operator) (Verrelst et al., 2012c) machine learning regres-
sion algorithm (MLRA) toolbox (Rivera et al., 2014a). To assess the
optimality of the identified bands, we will run a global sensitivity
analysis applied to the physically based PROSAIL canopy radiative
transfer model (RTM).

2. Gaussian processes regression

Estimation, regression and function approximation are old,
largely studied problems in statistics and machine learning. The
problem boils down to optimize a loss (cost, energy) function over
a class of functions. A large class of regression problems in particular
are defined as the joint minimization of a loss function accounting
for errors of the function f ∈ H to be learned, and a regulariza-
tion term, �

(
‖f ‖2

H
)

, that controls its capacity (excess of flexibility).
The problem can be approached within a Bayesian nonparametric
framework, and several algorithms are available, such as the rel-
evance vector machine (Tipping, 2001; Camps-Valls et al., 2006)
or Gaussian Processes regression (GPR) (Rasmussen and Williams,
2006; Camps-Valls et al., 2016), in which we will focus here.

GPR is equivalent in nature to kernel ridge regression (aka
least square support vector machine) and kriging. However, due to
their high computational complexity they did not become widely
applied tools in machine learning until recently. GPR can be inter-
preted as a family of kernel methods with the additional advantage
of providing a full conditional statistical description for the pre-
dicted variable, which can be primarily used to establish confidence
intervals and to set hyper-parameters (Rasmussen and Williams,
2006). In short, GPR assumes that a Gaussian process prior governs
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