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a  b  s  t  r  a  c  t

We  propose  a simple,  spatially  invariant  and  probabilistic  year-round  Empirical  Standardized  Soil Mois-
ture Index  (ESSMI)  that  is  designed  to  classify  soil  moisture  anomalies  from  harmonized  multi-satellite
surface  data  into  categories  of  agricultural  drought  intensity.  The  ESSMI  is computed  by  fitting  a nonpara-
metric  empirical  probability  density  function  (ePDF)  to historical  time-series  of soil  moisture  observations
and  then  transforming  it into  a normal  distribution  with  a mean  of zero and  standard  deviation  of  one.
Negative  standard  normal  values  indicate  dry soil  conditions,  whereas  positive  values  indicate  wet  soil
conditions.  Drought  intensity  is defined  as the  number  of  negative  standard  deviations  between  the
observed  soil  moisture  value  and  the  respective  normal  climatological  conditions.  To  evaluate  the  per-
formance  of  the  ESSMI,  we  fitted  the  ePDF  to  the Essential  Climate  Variable  Soil  Moisture  (ECV  SM) v02.0
data values  collected  in  the  period  between  January  1981  and  December  2010  at  South–Central  America,
and  compared  the root-mean-square-errors  (RMSE)  of residuals  with those  of beta  and  normal  proba-
bility  density  functions  (bPDF  and  nPDF,  respectively).  Goodness-of-fit  results  attained  with  time-series
of  ECV  SM  values  averaged  at monthly,  seasonal,  half-yearly  and  yearly  timescales  suggest  that  the  ePDF
provides  triggers  of  agricultural  drought  onset  and  intensity  that  are  more  accurate  and  precise  than  the
bPDF and  nPDF.  Furthermore,  by  accurately  mapping  the  occurrence  of major  drought  events  over  the
last three  decades,  the ESSMI  proved  to be  spatio-temporal  consistent  and  the  ECV  SM  data  to  provide
a  well  calibrated  and  homogenized  soil  moisture  climatology  for  the  region.  Maize,  soybean  and  wheat
crop  yields  in  the  region  are  highly  correlated  (r > 0.82) with  cumulative  ESSMI  values  computed  during
the  months  of  critical  crop  growing,  indicating  that  the  nonparametric  index  of soil  moisture  anomalies
can  be  used  for agricultural  drought  assessment.

© 2015  The  Authors.  Published  by  Elsevier  B.V.  This  is  an  open  access  article  under  the  CC  BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Drought is a damaging environmental disaster and affects more
people than any other natural hazard (Wilhite and Glantz, 1985).
There are numerous conceptual and operational drought defini-
tions proposed according to different disciplinary perspectives
(Heim, 2002). Fundamentally, drought is a temporary water sup-
ply deficit relative to some long-term average condition. Dracup
and Lee (1980) and Wilhite and Glantz (1985) proposed a drought
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typology based on four distinct types, namely meteorological, agri-
cultural, hydrological and socio-economic. The various drought
types represent different stages of a continuous meteorological
process and reflect the perspectives of different sectors on water
supply deficits (Smakhtin and Schipper, 2008). Although drought
types occur at different timescales, they are intimately interrelated
with each other: the longer the meteorological drought (lack of pre-
cipitation) is, the more likely other types of droughts (commonly
agricultural and hydrological) will occur as a result (Carrão et al.,
2014). Agricultural drought occurs when there is not enough soil
moisture to support average crop production on farms or aver-
age grass production on range lands (Wilhite and Glantz, 1985).
Since most crops are planted, agricultural drought is specifically
concerned with cultivated plants, as opposed to natural vegetation
(Keyantash and Dracup, 2002). Agricultural drought can occur at
the early, middle and latter parts of crop growing season and mani-
fests itself through reduction in average crop yield (Narasimhan and
Srinivasan, 2005; Penalba et al., 2007; Nagarajan, 2003; Rhee et al.,

http://dx.doi.org/10.1016/j.jag.2015.06.011
0303-2434/© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.
0/).

dx.doi.org/10.1016/j.jag.2015.06.011
dx.doi.org/10.1016/j.jag.2015.06.011
http://www.sciencedirect.com/science/journal/03032434
http://www.elsevier.com/locate/jag
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:paulo.barbosa@jrc.ec.europa.eu
dx.doi.org/10.1016/j.jag.2015.06.011
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Please cite this article in press as: Carrão, H., et al., An empirical standardized soil moisture index for agricultural drought assessment
from remotely sensed data. Int. J. Appl. Earth Observ. Geoinf. (2015), http://dx.doi.org/10.1016/j.jag.2015.06.011

ARTICLE IN PRESSG Model
JAG-1120; No. of Pages 11

2 H. Carrão et al. / International Journal of Applied Earth Observation and Geoinformation xxx (2015) xxx–xxx

2010; Llano et al., 2012; Martnez-Fernndez et al., 2015; Vyas et al.,
2015). Additionally, it diminishes forest productivity and increases
fire hazard (Caccamo et al., 2011; Hofer et al., 2012).

Several drought indices, typically based on a combination of
precipitation, temperature and soil moisture, have been derived
in recent decades to assess the effects of agricultural droughts and
define different drought parameters, which include intensity, dura-
tion, severity and spatial extent. The deficit of soil moisture volume
during crop growing season is a good index of agricultural drought
intensity, reflecting recent precipitation shortages and indicating
limited conditions for crop production (Keyantash and Dracup,
2002; Sheffield et al., 2004; Carrão et al., 2013; Vyas et al., 2015).
Using precipitation and temperature for estimating soil moisture
supply and demand within a two-layer soil model, Palmer (1965)
formulated what is now referred to as the Palmer drought index
(PDI). This was the first comprehensive effort to assess total soil
moisture status of a region (Mishra and Singh, 2010). Based on a
subset of weekly parameters from the computation of PDI moisture
budget, Palmer (1968) developed the Crop Moisture Index (CMI) to
estimate short-term changes in soil moisture conditions affecting
crops. PDI and CMI  have similar limitations in that both assume that
parameters like land use/land cover and soil properties are uniform
for all climatic regions (Narasimhan and Srinivasan, 2005).

More recently, Narasimhan and Srinivasan (2005) developed
the soil moisture deficit index (SMDI) and the evapotranspira-
tion deficit index (ETDI) for agricultural drought monitoring from
weekly soil moisture and evapotranspiration values simulated by
the Soil and Water Assessment Tool (SWAT) hydrologic model.
These drought indices are based on modeled soil moisture and
evapotranspiration deficits alone, irrespective of soil properties
across different climatic conditions, and are scaled for spatial com-
parison. Previously, Sheffield et al. (2004) have used retrospective
land surface hydrology simulations from the Variable Infiltration
Capacity (VIC) model to derive a soil moisture based drought index.
Monthly statistical distributions for soil moisture are developed
for each model grid cell, and drought intensity is represented as
percentiles of a beta probability distribution function fitted to the
simulated soil moisture values. Following a similar approach, Dutra
et al. (2008) introduced the Normalized Soil Moisture (NSM) index,
which is based on percentiles of a normal probability distribution
function fitted to simulated soil moisture values calculated by the
TESSEL land surface model.

All of these indices can be useful and all indices have inherent
strengths and weaknesses. However, none of the aforementioned
indices directly uses measured soil moisture observations, but
instead are based on estimated values from climatic variables or
hydrological modeling (Hunt et al., 2009). Hydrological models
perform a water balance assessment of the soil column, using
variables such as precipitation, air temperature, soil temperature,
soil porosity, and infiltration Keyantash and Dracup (2002). Since
land-atmosphere feedback mechanisms are not well understood
for many regions of the world, soil moisture estimates there may
be prone to large uncertainties (Sheffield et al., 2004; Dorigo et al.,
2010, 2015). Therefore, more recently, the soil moisture index (SMI)
(Sridhar et al., 2008; Hunt et al., 2009) and the soil water deficit
index (SWDI) (Martnez-Fernndez et al., 2015) were proposed as
alternative agricultural drought indices and are based on the actual
soil moisture content and known field capacity and wilting point
at each location.

Although ground-based soil moisture measurements are
extremely accurate, they are also extremely hard to compare to
large scale data sets because of their point-based nature, their
limited coverage, and the well known high variability of soils
(Sheffield et al., 2004; Peled et al., 2010). Since the 1980s, many
studies have promoted the use of synoptic, timely and spatially
continuous remote sensing soil moisture data from active and

passive microwave sensors to assess agricultural drought condi-
tions over large areas where ground monitoring instruments are
sparse or non-existent (Brown et al., 2008). However, the lack of
global consistent and long-term time-series of soil moisture obser-
vations from remote sensing data, which are required to derive
complete historical data sets to form a basis for the calculation of
drought indices, has prevented their operational use in the past
(Sheffield et al., 2004).

Recently, the Essential Climate Variable Soil Moisture (ECV SM)
product, derived from merged daily soil moisture observations
collected by different satellite sensors into a single homogenized
global data set covering the period 1978–2013, was  presented by
Liu et al. (2011, 2012) and Wagner et al. (2012). In this paper, we
explore the potential use of the ECV SM data set for assessing the
impacts of agricultural drought. To follow our objective, we pro-
posed, formulate and validate a new index of standardized soil
moisture and relate its values to agricultural drought intensity. The
Empirical Standardized Soil Moisture Index (ESSMI) is based on the
works developed previously by Sheffield et al. (2004) and Dutra
et al. (2008), but instead of fitting a beta (Sheffield et al., 2004) or
a normal (Dutra et al., 2008) (or any other parametric) probability
density function (PDF) to soil moisture amounts from ECV SM,  we
propose to fit an empirical PDF (ePDF) to soil moisture with a non-
parametric Kernel Density Estimator (KDE) (Silverman, 1986), as
similar as for the Empirical Standardized Precipitation Index (ESPI)
(Russo et al., 2013). We  choose a nonparametric estimator because:
(1) it avoids having to assume the existence of representative para-
metric distributions (Farahmand and AghaKouchak, 2015); (2) it
avoids the bias problems associated with relatively small sample
data sets (Sienz et al., 2012); (3) it allows for boundary bias correc-
tion of statistical data distributions supported on a finite interval
(Bouezmarni et al., 2011). The ESSMI standardizes the observed
soil moisture at a particular location during a period of time (e.g.
month, season, year) with respect to the soil moisture climatology
for the same period of time at that location. ESSMI results corre-
spond to percentiles p(x) of the fitted probability distribution and
are given in units of standard deviation: negative values corre-
spond to drier periods than normal and positive values correspond
to wetter period than normal.

As a benchmark, we compare the proposed approach with
the aforementioned drought indices proposed by Sheffield et al.
(2004) and Dutra et al. (2008), and evaluate its ability for monthly,
seasonal, half-yearly and yearly soil moisture frequency estima-
tion. To evaluate the spatio-temporal consistency of the ESSMI and
ECV SM data set, we analyze a time-series of index values for a
region in Bahia (northeast Brazil), as similar as Lloyd-Hughes and
Saunders (2002) and Lloyd-Hughes (2012). Finally, to evaluate the
suitability and potential of the ESSMI for assessing agricultural
drought impacts, we tested it against agricultural productivity, as
similar as Narasimhan and Srinivasan (2005), Penalba et al. (2007),
Kumar et al. (2009), Nagarajan (2003), Rhee et al. (2010), Llano
et al. (2012), Martnez-Fernndez et al. (2015) and Vyas et al. (2015),
to cite but a few.

2. Data and methods

In this section, we  present the ECV SM data set, the study
area, the computation process of the ESSMI, as well as the metrics
used for accuracy assessment and statistical comparison with other
drought indices.

2.1. The Essential Climate Variable Soil Moisture data set

The ESSMI is calculated by using the ECV SM v02.0 data set
(Liu et al., 2011, 2012). The theoretical and algorithmic base of the
product is completely described in Chung et al. (2012). The ECV
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