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a  b  s  t  r  a  c  t

To  date,  triple  collocation  (TC) analysis  is one  of the  most  important  methods  for  the  global-scale  eval-
uation  of  remotely  sensed  soil  moisture  data  sets.  In this  study  we  review  existing  implementations  of
soil  moisture  TC  analysis  as  well  as investigations  of  the  assumptions  underlying  the  method.  Different
notations  that are  used  to  formulate  the  TC  problem  are  shown  to  be  mathematically  identical.  While
many  studies  have  investigated  issues  related  to possible  violations  of  the underlying  assumptions,  only
few TC  modifications  have  been  proposed  to  mitigate  the  impact  of  these  violations.  Moreover,  assump-
tions,  which  are  often  understood  as a  limitation  that  is  unique  to  TC  analysis  are  shown  to be  common
also  to other  conventional  performance  metrics.  Noteworthy  advances  in  TC  analysis  have  been  made
in  the  way  error  estimates  are  being  presented  by moving  from  the  investigation  of  absolute  error  vari-
ance estimates  to the  investigation  of  signal-to-noise  ratio  (SNR)  metrics.  Here  we  review  existing  error
presentations  and  propose  the  combined  investigation  of the  SNR  (expressed  in logarithmic  units),  the
unscaled  error  variances,  and  the  soil  moisture  sensitivities  of  the  data  sets  as  an  optimal  strategy  for the
evaluation  of remotely-sensed  soil  moisture  data  sets.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Soil moisture is one of the most important drivers of the hydro-
logical cycle. Therefore, global soil moisture records are needed to
study hydrology driven phenomena of the earth system such as cli-
mate change, vegetation growth, and many others (Legates et al.,
2011). The most important sources for global soil moisture records
are microwave radar and radiometer instruments (Liu et al., 2011),
and land surface models (Reichle et al., 2002). However, both satel-
lite measurements and model predictions are subject to errors and
their correct interpretation and application requires an in-depth
understanding of their accuracy.

Triple collocation (TC) analysis is a method for estimating the
random error variances of three collocated data sets of the same
geophysical variable (Stoffelen, 1998). It does not require the avail-
ability of a high-quality reference data set and has therefore evolved
as one of the most important evaluation methods in earth obser-
vation. In this study we will focus exclusively on the evaluation of
remotely sensed soil moisture, even though some of the discussions
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and findings are of general validity to other variables in hydrom-
eteorology and oceanography (Vogelzang et al., 2011; Caires and
Sterl, 2003; Roebeling et al., 2012; Fang et al., 2012).

Since its development in 1998 a host of research has been carried
out to investigate the limitations of TC analysis, most of which are
related to violations in the underlying assumptions that are made
on the structural properties of the considered data sets. However,
only a few studies have proposed methods to mitigate the impact
of such violations. Moreover, the assumptions made in TC analy-
sis are often considered to be unique to the method, yet most of
them are also implicitly made in the application of conventional
performance metrics, which has not been explicitly pointed out
in existing studies. This study will provide a comprehensive dis-
cussion of the assumptions that are made for TC analysis and the
impact of possible violations, together with a review of already
existing investigations and proposed modifications of the TC model.
Also, we will demonstrate the similarity between the assumptions
that are made for TC analysis, and those made for the most impor-
tant alternative performance metrics such as the linear correlation
coefficient and the root-mean-squared-difference (RMSD).

Moreover, different notations are being used to formulate and
solve the TC problem, based either on cross-multiplied differences
between the data sets, or on combinations of the (co-)variances
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between them (Stoffelen, 1998; Loew and Schlenz, 2011; Scipal
et al., 2008; Dorigo et al., 2010; Su et al., 2014b; McColl et al.,
2014). This has fostered the impression of structurally different
implementations, yet all proposed notations are mathematically
identical. This identity will be analytically clarified in this study.

While the fundamental underlying maths and the required
assumptions have remained unchanged over time, useful advances
have been made in the way the obtained error estimates are pre-
sented and interpreted. In the literature, most studies investigate
error variance estimates directly. Recently, several studies pro-
posed to investigate errors relative to the underlying signal, i.e., as
a direct or indirect representation of the signal-to-noise ratio (SNR)
(Draper et al., 2013; Su et al., 2014b; McColl et al., 2014). Even less
common than the investigation of the SNR is the investigation of
soil moisture sensitivities, which can also be estimated using TC
analysis (Stoffelen, 1998; McColl et al., 2014). In this study we  will
review the proposed metrics and demonstrate their similarities as
well as their respective advantages and disadvantages. Finally, we
propose the combined investigation of the SNR (expressed in loga-
rithmic units), the unscaled error variances, and the soil moisture
sensitivities of the data sets as an optimal combination to evaluate
remotely sensed soil moisture data sets, which best exploits the
complementary information content of the available performance
metrics.

Section 2 compares the different notations used to formulate
the TC problem. Section 3 provides a comprehensive discussion
on the underlying assumptions. Section 4 compares different error
presentations and demonstrates the proposed optimal evaluation
strategy.

2. Triple collocation formulation

2.1. Error model

The most commonly used error model for TC analysis has the
following form:

i = ˛i + ˇi� + εi (1)

where i ∈ [X, Y, Z] are three spatially and temporally collocated data
sets. � is the unknown true soil moisture state; ˛i and ˇi are sys-
tematic additive and multiplicative biases of data set i with respect
to the true state, and εi represents additive zero-mean random
noise. Note that the additive bias ˛i represents an offset between
the temporal mean of data set i and the true soil moisture mean.
Therefore, relative differences between  ̨ coefficients of different
data sets can be easily corrected for by matching their temporal
mean. Relative correction of the  ̌ coefficients is less trivial and
will be discussed in Section 2.3. The underlying assumptions for
the error model in (1) are: (i) Linearity between the true soil mois-
ture signal and the observations, (ii) signal and error stationarity,
(iii) independency between the errors and the soil moisture signal
(error orthogonality), and (iv) independency between the errors of
X, Y and Z (zero error cross-correlation). A detailed discussion on
these assumptions will be provided in Section 3.

In TC analysis, the mean squared random error of all three data
sets (i.e., the respective error variance �2

εi
= 〈ε2

i
〉, where 〈 · 〉 denotes

the temporal average) are estimated individually. Unlike the con-
ventional (root-)mean-square-difference, TC estimates the error
variances independently from the errors in a chosen reference data
set. The most common way to solve for the �2

εi
is – as proposed

by Stoffelen (1998) – by cross-multiplying differences between the
three a-priori rescaled data sets. Stoffelen (1998) also proposed an
alternative formulation (for the estimation of �2

εi
), which is based

on combinations of the covariances between the data sets. Even
though both approaches are mathematically identical, the latter

has been used only in a small number of recent studies (Loew
and Schlenz, 2011; Su et al., 2014b,a; McColl et al., 2014). For the
remainder of this paper, the former approach will be denoted as
difference notation and the latter as covariance notation.

It is worth noting that standard triple collocation analysis based
on (1) is a form of instrumental variable (IV) regression and that
the framework of IV may  provide an opportunity for extending the
analyses to include several more variables (>3 data sets) and poly-
nomial models (Su et al., 2014a; Bowden and Turkington, 1990). An
alternative form of IV implementation is to use time-lagged ver-
sions of a data set as a third variable. Under the condition of weakly
auto-correlated errors in the lagged variable, such an IV analysis
yields the same results as TC but without the need for three coin-
cident data sets. This is invaluable in practice when sampled data
are limited due to limited spatio-temporal coverages of measuring
systems or non-stationarity issues. For a detailed discussion on the
relation between TC and IV we  refer the reader to Su et al. (2014a)
as this is beyond the scope of this paper.

2.2. Difference notation

When using the difference notation (Stoffelen, 1998; Scipal et al.,
2008; Dorigo et al., 2010), the data sets first have to be rescaled
against an arbitrarily chosen reference data set (this will be X for the
following example). Subsequently, error variances can be estimated
by averaging the cross-multiplied differences between the three
data sets:

�2
εX

= 〈(X − YX )(X − ZX )〉
�2

εX
Y

= 〈(YX − X)(YX − ZX )〉
�2

εX
Z

= 〈(ZX − X)(ZX − YX )〉
(2)

where the superscript X denotes the scaling reference. A detailed
derivation of (2) is provided in Appendix A.

Since (2) requires rescaled data as input, it also estimates the
error variances within the data space of the chosen scaling ref-
erence. Any error in the rescaling of the data will in turn lead to
errors in the estimated error variances. In particular, these will not
converge to the actual error variances, if the estimates of the scal-
ing parameters themselves do not converge to their actual values
as the number of samples increases. In other words, these scaling
parameters have to be inferred using a consistent estimator.

2.3. Consistent estimation of scaling parameters

In the literature, many different rescaling techniques (e.g., lin-
ear regression, standardization, normalization, and others) have
been applied. However, the only method that provides consistent
estimates of (linear) scaling parameters also in case of differing
signal-to-noise ratios (SNR) is triple collocation (Stoffelen, 1998;
Yilmaz and Crow, 2013). It can be regarded as a form of instrumen-
tal variable regression, where a third variable (for instance, Z) is
used as an instrument to resolve the relationship between erro-
neous measurements of two variables (X and Y) (Su et al., 2014a).
Similarly, Y can act as an instrument to resolving the X–Z relation-
ship. The resultant consistent estimates of the scaling factors ˇi in
these relationships yield the following solutions:

ˇ∗
Y = ˇX

ˇY
= 〈(X − X̄)(Z − Z̄)〉

〈(Y − Ȳ)(Z − Z̄)〉 = �XZ

�YZ

ˇ∗
Z = ˇX

ˇZ
= 〈(X − X̄)(Y − Ȳ)〉

〈(Z − Z̄)(Y − Ȳ)〉 = �XY

�ZY

(3)

The overbar denotes the mean value of the time series, and ˇ∗
X and

ˇ∗
Z are the rescaling coefficients which match the underlying true



Download English Version:

https://daneshyari.com/en/article/6348568

Download Persian Version:

https://daneshyari.com/article/6348568

Daneshyari.com

https://daneshyari.com/en/article/6348568
https://daneshyari.com/article/6348568
https://daneshyari.com

