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a  b  s  t  r  a  c  t

Developing  spectral  models  of soil  properties  is an  important  frontier  in  remote  sensing  and  soil  science.
Several  studies  have  focused  on  modeling  soil  properties  such  as  total  pools  of  soil  organic  matter  and
carbon  in  bare  soils.  We  extended  this  effort  to model  soil  parameters  in areas  densely  covered  with
coastal  vegetation.  Moreover,  we investigated  soil properties  indicative  of  soil  functions  such  as  nutri-
ent  and  organic  matter  turnover  and  storage.  These  properties  include  the  partitioning  of  mineral  and
organic  soil  between  particulate  (>53  �m) and  fine  size  classes,  and the  partitioning  of  soil  carbon  and
nitrogen  pools  between  stable  and  labile  fractions.  Soil  samples  were  obtained  from  Avicennia  germinans
mangrove  forest  and  Juncus  roemerianus  salt  marsh  plots  on  the  west  coast  of  central  Florida.  Spectra
corresponding  to field  plot  locations  from  Hyperion  hyperspectral  image  were  extracted  and  analyzed.
The  spectral  information  was  regressed  against  the  soil  variables  to  determine  the best  single  bands
and  optimal  band  combinations  for the  simple  ratio  (SR)  and normalized  difference  index  (NDI)  indices.
The  regression  analysis  yielded  levels  of correlation  for soil  variables  with  R2 values  ranging  from  0.21
to  0.47  for  best individual  bands,  0.28  to 0.81  for two-band  indices,  and 0.53  to  0.96  for  partial  least-
squares  (PLS)  regressions  for the  Hyperion  image  data. Spectral  models  using  Hyperion  data  adequately
(RPD  >  1.4)  predicted  particulate  organic  matter  (POM),  silt  +  clay,  labile  carbon  (C),  and  labile  nitrogen
(N)  (where  RPD  =  ratio  of  standard  deviation  to  root mean  square  error  of cross-validation  [RMSECV]).  The
SR (0.53  �m, 2.11  �m)  model  of labile  N with  R2 =  0.81,  RMSECV=  0.28,  and RPD  =  1.94  produced  the  best
results  in  this  study.  Our  results  provide  optimism  that  remote-sensing  spectral  models  can  successfully
predict  soil  properties  indicative  of ecosystem  nutrient  and  organic  matter  turnover  and  storage,  and  do
so in  areas  with  dense  canopy  cover.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Coasts are subject to devastating storms and frequent tidal
exchange (Cahoon, 2006), making coastal wetlands vital to pre-
venting shoreline erosion by providing sediment stabilization and
water storage (Hardisky et al., 1986). In addition, coastal wetlands
process organic and chemical wastes and reduce sediments in
water (Rao et al., 1999). In turn, soil quality and composition have
a direct effect upon the health of vegetation, especially in wetland
environments (Ehrenfeld et al., 2005), and maintaining this recip-
rocal relationship is essential to preserving coastal habitats. For
instance, coastal soils hold large concentrations of organic matter
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that supplies the N needed to support mangrove forest and salt
marsh primary production (Nedwell et al., 1994; Anderson et al.,
1997; Alongi et al., 2002), which in turn promotes soil accretion
through organic matter production and sediment trapping (Morris
et al., 2002). This feedback is critical for maintaining wetland ele-
vation relative to rising sea levels (Kirwan and Mudd, 2012; Morris
et al., 2012). Soils are complex and dynamic, both temporally and
spatially, requiring numerous physical, chemical, and biological
determinants for soil quality assessment. Soil sampling, from spec-
imen collection to the generation of quantitative data, consumes a
tremendous amount of time and requires delicate lab procedures.

The premise of estimating soil components using spectral anal-
ysis under laboratory conditions was heavily tested along the past
few decades. For example, in agricultural settings, soil organic
matter (SOM) models were defined through spectral reflectance
measured in the laboratory for black soil (Liu et al., 2009), and litchi
orchid (Li et al., 2012). Similarly, sand, clay (Minasny et al., 2008;
Summers et al., 2011), total C, total N (Morra et al., 1991), and soil
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moisture (Dalal and Henry, 1986) were tested in laboratory sett-
ings. Shepherd and Walsh (2002) tested topsoil (0- to 15-cm depth)
organic C concentration, clay content and sand content through dif-
fuse reflectance spectroscopy (0.35–2.5 �m)  on a diverse sample
that was acquired from a wide variety of landscape positions, par-
ent materials and landscapes. Yitagesu et al. (2011) tested modeling
pure clay material using laboratory based spectral data (2.5–14 �m)
and partial least squares (PLS) regression and attained much of the
variation in their components. In these studies, strong correlations
between spectral reflectance and the field samples were reported.
For example, absorption regions of C and N bonds of near-infrared
reflectance spectroscopy (NIRS) correlated with soil C and N frac-
tions (Morra et al., 1991). Near-infrared bands attributed to the
bending and stretching of O-H bonds in lattice mineral and water
molecules were associated with soil clay content (Summers et al.,
2011).

Brown et al. (2006) found strong relationships between VINIR
and soil organic C, and clay content. They identified the 0.54, 0.55,
and 1.91 �m wavelengths, sensitive to H2O, as important wave-
lengths in soil organic C estimation. Information in the 2.0– 2.5 �m
was found important due to e.g. C O and C H bond absorptions.
Dalal and Henry (1986) concluded that absorption along the near-
infrared (NIR) spectra was correlated with moisture content in soil.
Summers et al. (2011), and Chang et al. (2001) concluded that the
organic matter content of the soil was inversely proportional to
albedo along the visible near-infrared (VNIR) region of the spec-
trum. Bands that significantly correlated with SOM samples were
associated to regions in the spectra sensitive to the C H, N H, and
O H bonds (Li et al., 2012). These studies used in situ or laboratory
spectroscopy of bare soils regressed against the laboratory based
physically and chemically derived soil properties.

Technological advances in remote sensing have allowed for
the development of cost-efficient and effective alternative meth-
ods of soil assessment (Mulder et al., 2011). The transition from
lab to remote sensing analysis of soils involves accounting for
the effects of atmospheric influences, geometric distortions, spa-
tial resolution, and scale (Mulder et al., 2011). Several surface soil
properties including organic matter were modeled from airborne
hyperspectral imagery (Hbirkou et al., 2012; Ben-Dor et al., 2002)
and aerial color photographs (López-Granados et al., 2005). Air-
borne hyperspectral imagery was used to build SOM models for
agricultural clay-loam soil (Uno et al., 2005). Such models were suc-
cessfully constructed using field samples and aerial hyperspectral
data (HyMap and Airborne Visible/Infra-Red Imaging Spectrom-
eter) of bare soil fields for estimating SOM, sand, silt, clay, and
other soil properties (Palacios-Orueta and Ustin, 1998; Selige et al.,
2006).

Chabrillat et al. (2002) showed the use of AVIRIS and Hyperspec-
tral Mapper (HyMap) imagery and matched filtering algorithm for
successful mapping of exposed clay minerals. Combined sampling
of dry bare ground and pasture was used in modeling soil organic
carbon using the spaceborne measurements and Hyperion hyper-
spectral imagery (Lu et al., 2012; Gomez et al., 2008). Mulder et al.
(2013) aimed at the characterizing and improving the mapping of
mineral variability at a regional scale from remote sensing imagery
on a diverse lithological setting that included sedimentary, igneous,
and metamorphic rock types. ASTER, multiple linear regressions
(MLR), and different smoothing techniques were used to evaluate
clay mineral and attained moderate R2 values of 0.57 and 0.45. Shi
et al. (2014) used HyMap airborne hyperspectral imagery and field
samples to map  soil acidity in coastal areas. Their study used PLS
regression and mineral mapping as an indicative of soil acidity.

Although numerous studies have focused on modeling soil
properties from remote sensing technologies either directly from
bare soil, or by inferring soil properties through vegetation cover
(Huete, 2005; Kooistra et al., 2004). However, utilization of remote

sensing technology in quantification of under-canopy soil proper-
ties remains limited. Ben-Dor et al. (2002) developed methods to
quantify under-canopy soils properties, but did so with interpola-
tion techniques such as kriging (López-Granados et al., 2005) that
were based on models built with open-surface soil samples. Spatial
interpolations, however, present accuracy problems in mapping
applications (Selige et al., 2006). In other studies, soil properties
were mapped from partially vegetated fields through spectral
unmixing of hyperspectral data for estimating clay (Ouerghemmi
et al., 2011) and soil organic carbon (Bartholomeus et al., 2011).
The research on inferring soil properties through vegetation
cover is in its infancy, as only a few studies have investigated the
relationship between soil properties and vegetation reflectance
(Kooistra et al., 2004; Piekarczyk et al., 2012). Kooistra et al. (2004)
estimated substrate (vegetation covered) SOM and soil moisture in
addition to a few other properties through field measured hyper-
spectral vegetation reflectance data. Gomez et al. (2008) focused
on establishing the relationship between Hyperion spectra and
in situ soil samples of bare soil and pasture. Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) were used to
infer few substrate soil properties, including reflectance through
vegetation (Piekarczyk et al., 2012).

While the application of remote sensing to soils continues to
grow in terms of context (e.g., modeling sub-canopy soils), it is also
at its infancy in terms of information value for ecosystem function.
Remotely sensed soil characteristics evaluated to date (cited above)
are important components of ecosystem structure, and are relevant
to global change issues (e.g., total soil C storage). They are not, how-
ever, the most important soil characteristics for functions such as
nutrient recycling, primary production, and soil CO2 emissions. For
these functions, soil indicators of nutrient recycling and organic
matter recalcitrance would be more useful. Such indicators include
(a) the fractionation of mineral and organic soil between particu-
late (>53 �m)  and fine size classes, as particle size can regulate the
availability of soil organic matter to microbial decomposers and
can mediate rates of N immobilization in soil (Sollins et al., 1996;
Stewart et al., 2007; Castellano et al., 2013), and (b) the partition-
ing of soil organic carbon and nitrogen between stable and labile
(readily-mineralized) fractions, which is thought to regulate the
capacity of soil to retain these elements (Kaye et al., 2002). Labile
stores of soil carbon and nitrogen are readily transformed to CO2
and nitrogen oxides, which can pose air and water quality problems.
We are aware of no studies that evaluate whether these functional
soil characteristics correlate with spectral reflectance.

The goal of this study is to develop statistical models that esti-
mate soil parameters related to nutrient and organic matter storage
and turnover from the Hyperion and Thematic Mapper satellite
imagery, providing a practical method for remotely monitoring soil
composition in coastal wetland environments. We  hypothesize that
soil characteristics are affected by plant cover, which in turn corre-
lates with image spectra. In this context, this study encompassed
areas of dense vegetation to investigate the levels of correlation
between hyperspectral/multispectral band reflectance and eigh-
teen soil parameters such as particulate organic matter (POM),
mineral associated organic matter (MAOM), labile carbon (labile C),
and labile nitrogen (labile N), which require significant resources
and extended field sampling procedures. To our knowledge, many
of the soil properties investigated in this study have not been pre-
viously studied through the vegetation reflectance technique.

2. Materials and methods

2.1. Soil sampling

Soils were sampled from three intertidal sites (Fig. 1) at intervals
of about 4.4 km along the coast of west-central peninsular Florida,
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