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a  b  s  t  r  a  c  t

Biomass  is  a key environmental  variable  that influences  many  biosphere–atmosphere  interactions.
Recently,  a  number  of  biomass  maps  at national,  regional  and  global  scales  have  been  produced  using  dif-
ferent  approaches  with  a variety  of input  data,  such  as  from  field observations,  remotely  sensed  imagery
and  other  spatial  datasets.  However,  the accuracy  of these  maps  varies  regionally  and  is largely  unknown.
This  research  proposes  a fusion  method  to increase  the  accuracy  of regional  biomass  estimates  by  using
higher-quality  calibration  data.  In  this  fusion  method,  the biases  in  the  source  maps  were  first  adjusted  to
correct  for over-  and  underestimation  by  comparison  with  the  calibration  data.  Next,  the  biomass  maps
were  combined  linearly  using  weights  derived  from  the  variance–covariance  matrix  associated  with  the
accuracies  of  the  source  maps.  Because  each  map  may  have  different  biases  and  accuracies  for  different
land  use  types,  the  biases  and  fusion  weights  were  computed  for each  of  the  main  land  cover  types sepa-
rately.  The  conceptual  arguments  are substantiated  by a  case  study  conducted  in  East  Africa.  Evaluation
analysis  shows  that fusing  multiple  source  biomass  maps  may  produce  a  more  accurate  map  than  when
only  one  biomass  map  or unweighted  averaging  is  used.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Biomass data are important for assessing efforts in reducing
carbon emissions from deforestation and forest degradation and
provide valuable information in support of the conservation and
sustainable management of forests, which are often missing in
developing countries in particular (Baccini et al., 2012; De Sy et al.,
2012; Herold and Skutsch, 2011; Romijn et al., 2012). Accurate
estimation of biomass is also essential for monitoring the global
or regional carbon cycle (Houghton, 2005; Le Quere et al., 2009).
Currently, three methods are used for estimating the spatial distri-
bution of biomass (Avitabile et al., 2011; Goetz et al., 2009; Sales
et al., 2007). The first method uses estimates based on the assess-
ment of different land uses and their associated biomass densities
(Avitabile et al., 2011). The second method interpolates or extrap-
olates biomass estimates obtained in the field across extensive
regions (Sales et al., 2007). The third method makes use of empiri-
cal, parametric and non-parametric models for biomass estimation
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over large areas using remote sensing data and spatial datasets such
as land cover data, digital elevation models (DEMs) and forest maps
(Avitabile et al., 2012; Baccini et al., 2012; Saatchi et al., 2011).
Biomass maps can be produced at regional and global scales with
different mapping methods and using a variety of input data such as
field (plot) data, remotely sensed images and spatial datasets. Dif-
ferent biomass estimation methods may  lead to different biomass
maps with different accuracies that can vary from region to region
(Avitabile et al., 2011; De Sy et al., 2012). The information content of
multiple biomass maps may  also be disparate and complementary.
Fusing these maps might lead to a more accurate combined biomass
map  for regional and global applications. However, most current
studies are concerned with producing biomass maps using a vari-
ety of methods and comparing biomass maps derived from each
information source separately (Avitabile et al., 2011; Sales et al.,
2007; Wulder et al., 2008). Little to no research seems to address
the fusion of biomass maps from different sources using additional
reference data and understanding of uncertainties in the various
maps (De Sy et al., 2012; Romijn et al., 2012).

Biomass map  fusion could be accomplished with existing data
fusion theories and methods, which mainly include Bayesian deci-
sion theory (Mascarenhas et al., 1996), Shafer’s theory of evidence
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(Lee et al., 1987), consensus theory (Benediktsson and Swain,
1992), neural networks (Benediktsson et al., 1990; Bruzzone, 1999),
Markov random field (Solberg et al., 1996), support vector machines
(Waske and Benediktsson, 2007), fuzzy logic (Stover et al., 1996)
and other statistical approaches (Bates and Granger, 1969; Hansen,
2008; Heuvelink and Bierkens, 1992; Ramin et al., 2012; Stein,
2005). Some of these methods are restricted to categorical source
data while others apply to continuous source data. For example,
Bayesian decision theory, Shafer’s theory of evidence and consen-
sus theory were used to fuse the classified results from different
classifiers (Ge and Bai, 2010). Fuzzy logic was used to fuse land cover
products by exploring disagreements among them and capturing
the uncertainties in the products (Fritz and See, 2005; Herold et al.,
2006; Jung et al., 2006; See and Fritz, 2006), while some statistical
techniques such as principal component analysis and regression
can be used to fuse continuous source data like remote sensing
imagery (Hall, 1992; Pohl and van Genderen, 1998). Recently,
Nguyen et al. (2012) proposed a geostatistical-based data fusion
for predicting the aerosol process from two noisy datasets. This
method is applicable to the process which has a linear trend in the
spatial covariates, and it involves the inversion of large-to-massive
datasets with fixed rank kriging.

For continuous biomass map  fusion, this article adopts an idea
initially proposed by Bates and Granger (1969) and Heuvelink and
Bierkens (1992), which achieves biomass map  fusion by weighted
averaging of the source biomass maps. The weights are derived
from the variance–covariance matrix associated with the errors in
each of the source maps. Compared with other fusion methods,
the proposed method is simple and easy to implement and com-
plements regional estimates where additional data are available.
The variance–covariance matrix is estimated by comparison of the
source map  values with those of a more accurate map, which must
be available for a subset of the entire study area. To investigate the
performance of this method, three biomass maps were fused for
the study area of East Africa. The fused result was first compared
with field biomass observations and the uncertainty map  of fused
result was then compared with the source uncertainty maps.

2. Methods

2.1. The generic framework

This article considers the case in which there are multiple maps
of the same environmental variable that each has their own  degree
of accuracy. The aim is to fuse or merge these maps (‘source maps’)
in such a way that the combined map  has greater accuracy than
each of the individual maps. The fusion method proposed here
has six steps (Fig. 1): (1) collecting data, such as the source maps,
calibration data and validation data; (2) pre-processing, includ-
ing matching the projections and spatial resolutions of each of the
source maps; (3) stratification of the study area into subareas that
are homogeneous with respect to the accuracy of the source maps;
(4) assessing the accuracy of the source maps per sub-area with
a bias estimate and a variance–covariance matrix; (5) the fusion
itself; (6) evaluation. These steps are described in detail in the
sections below.

2.2. The fusion model

Let there be p source maps zi, i = 1, . . .,  p that each contains esti-
mates of the environmental variable of interest (i.e. biomass) for
locations s ∈ D, D being the geographical domain of interest. The
fusion of these maps is achieved by a weighted linear average:

f (s) =
∑p

i=1
wi(s) · (zi(s) − vi(s)) (1)

where f is the fused map, the wi(s) is the weight and the vi(s) is
the bias correction. In order to calculate the weights we assume a
statistical model for the discrepancies between the true biomass b
and the map  estimates zi:

zi(s) = b(s) + vi(s) + εi(s) (2)

where εi(s) is a random noise term with zero mean for each s ∈ D.
We further assume that the εi(s), i = 1, . . .,  p are jointly normally
distributed with variance-covariance matrix C(s).

Under these assumptions, the vector of weights w(s) that mini-
mizes the variance of the estimation error of f(s) is easily calculated
as (Searle, 1971; Heuvelink and Bierkens, 1992):

w(s)T = (1TC(s)−11)
−1

1TC(s)−1 (3)

where 1 = [1, . . .,  1]T is the p-dimensional unit vector and where
T means transpose. The fused map  will be unbiased with variance
given by:

Var(f (s)) = (1TC(s)−11)
−1

(4)

Under the assumptions made, the variance of the error in the
fused map  cannot be greater than the smallest of the error vari-
ances of the individual maps (Bates and Granger, 1969). It will be
substantially smaller than that if multiple maps have similar error
variances that are close to the smallest error variance and the errors
associated with these maps are not strongly positively correlated.
Attractive properties of this fusion model are: (1) it is simple to
use; (2) it allows the assignment of different weights to different
biomass maps based on the accuracies of the maps for different
strata (i.e. subareas); and (3) it can handle missing data values
in some of the source maps. The latter means that when one or
more (but not all) source maps have missing data at some loca-
tion, then the fused result at that location is obtained by fusing the
remaining source maps, with weights derived from the reduced
variance–covariance matrix.

2.3. Calibration of the fusion model

From the above equations it can be seen that to compute the
weights, the variances of the source map  errors are needed, as well
as their correlations (or covariances). In addition, bias estimates
for each of the individual source maps are required. In biomass
fusion, one way to obtain this information is to use calibration data.
However, accessing calibration data which cover the entire area of
interest is difficult. An alternative method for deriving the accu-
racies of source maps and their correlations is to use calibration
data from a subarea for which a biomass map  with much higher
accuracy is available. By comparison of the calibration and map
data, one obtains the errors of the maps, and from these variances,
correlations and biases can be estimated in the usual way.

Since it is unrealistic to assume that the variances, correlations
and biases of the source maps are spatially invariant, it is sensible
to stratify the area into zones for which this assumption is more
realistic. Indeed, the spatial accuracy of the source biomass maps
may  vary from region to region. Given calibration data y(sk) at k = 1,
. . .,  n locations in a stratum, the estimates of bias and variance-
covariance matrix are as follows:

v̂i = 1
n

n∑
k=1

(zi(sk) − y(sk)) (5)

Ĉij = 1
n

n∑
k=1

(zi(sk) − y(sk))(zj(sk) − y(sk)) (6)

where i, j = 1, . . .,  p indicate source maps.
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