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a  b  s  t  r  a  c  t

Area-to-point  (ATP)  kriging  is a common  geostatistical  framework  to address  the  problem  of  spatial  dis-
aggregation  or downscaling  from  block  support  observations  (BSO)  to point  support  (PoS)  predictions  for
continuous  variables.  This  approach  requires  that  the  PoS  variogram  is  known.  Without  PoS  observations,
the  parameters  of the  PoS  variogram  cannot  be  deterministically  estimated  from  BSO,  and  as  a  result,  the
PoS variogram  parameters  are  uncertain.  In this  research,  we used  Bayesian  ATP  conditional  simulation
to estimate  the  PoS  variogram  parameters  from  expert  knowledge  and  BSO,  and  quantify  uncertainty  of
the PoS  variogram  parameters  and  disaggregation  outcomes.  We  first  clarified  that  the nugget  parame-
ter  of  the  PoS  variogram  cannot  be  estimated  from  only  BSO.  Next,  we  used  statistical  expert  elicitation
techniques  to  elicit  the  PoS variogram  parameters  from  expert  knowledge.  These  were  used  as  infor-
mative  priors  in  a Bayesian  inference  of  the PoS  variogram  from  BSO  and  implemented  using  a  Markov
chain  Monte  Carlo  algorithm.  ATP  conditional  simulation  was  done  to  obtain  stochastic  simulations  at
point  support.  MODIS  (Moderate  Resolution  Imaging  Spectroradiometer)  atmospheric  temperature  pro-
file  data  were  used  in an  illustrative  example.  The  outcomes  from  the  Bayesian  ATP inference  for  the
Matérn  variogram  model  parameters  confirmed  that  the  posterior  distribution  of  the  nugget  parameter
was  effectively  the  same  as  its prior  distribution;  for the other  parameters,  the  uncertainty  was  substan-
tially decreased  when  BSO  were  introduced  to  the  Bayesian  ATP  estimator.  This confirmed  that  expert
knowledge  brought  new  information  to infer  the  nugget  effect  at PoS  while  BSO  only  brought  new  infor-
mation  to  infer  the  other  parameters.  Bayesian  ATP  conditional  simulations  provided  a  satisfactory  way
to quantify  parameters  and  model  uncertainty  propagation  through  spatial  disaggregation.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Spatial disaggregation (downscaling) is becoming more impor-
tant in a world where the demand for data transformation from
global to local scales is rapidly increasing. In climate research,
for example, regional or local climate models may  require data
of spatial climate attributes (e.g. precipitation, air temperature or
atmospheric vapour) at finer resolution than those measured using
remote sensing (RS) instruments or predicted using global climate
models. Here, spatial resolution or pixel size stands for the spatial
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support, i.e. the geometrical size, shape and spatial orientation of a
spatial unit of an observation or a prediction. Changing the spatial
support of a variable changes its statistical and spatial properties
(Schabenberger and Gotway, 2005). This is the well-known change
of support problem (COSP) (Cressie, 1996; Gotway and Young,
2002; Schabenberger and Gotway, 2005).

Spatial support and COSP have been acknowledged as an impor-
tant source of uncertainty in RS analyses due to aggregation and
zoning effects (Marceau and Hay, 1999; Dungan, 2006). Spatial
disaggregation of remotely sensed imagery through interpolation
shows an important application of geostatistics to RS analysis
(Van der Meer, 2012). Well-known geostatistical techniques for
downscaling remotely sensed imagery of continuous variables are
Area-to-Point (ATP) kriging and multivariate ATP kriging (Atkinson,
2013).

In this study, we  focused on ATP kriging (Kyriakidis, 2004) for
spatial disaggregation of a Gaussian random field. ATP kriging fol-
lows the principle of classical kriging and makes predictions of an
attribute at point support (PoS) from block support observations
(BSO) of the same attribute. It also quantifies the uncertainty about
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the disaggregated predictions by means of the ATP kriging variance.
ATP kriging satisfies the condition that the arithmetic average of the
predictions (and simulations) at all point locations within a block
equals the value of this block when the same number of BSO is used
as conditioning data (Goovaerts, 2008). Hence, to use ATP kriging,
BSO must be (assumed to be) the arithmetic average of PoS data
within the blocks.

Let z be the variable of interest that is assumed to be a realisation
of a second-order stationary Gaussian random function Z and let
z̄(Bi) = 1/

∣∣Bi

∣∣ ∫
s∈Bi

z(s) ds be the value of z at block support, where

z(s) is the value of z at point location s and
∣∣Bi

∣∣ is the area of a
block B indexed by i. Because the arithmetic averaging is linear in
its argument, the random process at block support is also a Gaussian
process.

Let Zp = (Z(s1), . . .,  Z(sM))T and Z̄B = (Z̄(B1), . . ., Z̄(BN))
T

denote
vectors of Z at point and block support, then their joint probability
distribution is jointly Gaussian:[

Zp

ZB

]
∼N

(
�

[
1M

1N

]
,

[
Cpp CpB

CBp CBB

])
(1)

where � is the constant spatial mean of Z, 1M and 1N are M and N
vectors of ones, Cpp is the M × M variance − covariance matrix of Zp,
CBB is the N × N variance-covariance matrix of Z̄B, CpB and CBp are
the variance-covariance matrix between Zp and Z̄B and vice versa.

Because their joint distribution is normal, the optimal predictor
of Zp given Z̄B is a linear combination of the BSO (Chilès and Delfiner,
1999, Section 3.3.4):

Ẑp = �1M + CpBC−1
BB(Z̄B − �1N) (2)

The variance-covariance matrix of the prediction error, called
C(Zp − Ẑp), is given by:

C(Zp − Ẑp) = Cpp − CpBC−1
BBCT

pB (3)

This shows that ATP kriging is straightforward and very sim-
ilar to common kriging, but its main difficulty is that it requires
the PoS variogram (Kyriakidis, 2004) to calculate the point-point,
point-block and block-block variance-covariance matrices in Eq.
(1), where the latter two require a regularisation (Journel and
Huijbregts, 1978, Section II.D.4). Estimation of the PoS variogram
from BSO is usually done using deregularisation or deconvolution
(Journel and Huijbregts, 1978, Section II.D.4). Pardo-Igúzquiza and
Atkinson (2007) introduced an iterative numerical deconvolution
method to derive the PoS variogram from regular BSO (i.e. satel-
lite imagery). In their study, the types of models included in the
nested PoS variogram model were defined based on the nested
variogram model fitted to the BSO. The optimisation condition
was that the derived PoS variogram was the one minimising the
difference between the theoretically regularised variogram model
and the model fitted to the BSO. Goovaerts (2008) extended the
method of Pardo-Igúzquiza and Atkinson (2007) to derive the PoS
variogram from both regular and irregular (i.e. different size and
shape) BSO. Gotway and Young (2007) presented an iterative gen-
eralised estimation approach to estimate the parameters of the
PoS covariance function and the trend surface using irregular BSO.
Nagle et al. (2011) used maximum likelihood estimation for the
PoS covariance function using BSO. Gelfand et al. (2001) addressed
Bayesian estimation of PoS variogram parameters from BSO of
a spatial–temporal process. Their study focused on developing
objective Bayesian inference methods, where the priors of the PoS
variogram model parameters were given as noninformative priors.
This is one of few studies that addressed PoS variogram estimation
from BSO using a Bayesian approach.

In all aforementioned methods for deriving the PoS variogram,
the nugget component of the PoS variogram was dismissed and

assumed to be zero. There was  surprisingly little attention on
resolving the issue of inferring the nugget parameter from BSO,
despite the material impact of the nugget variance on the ATP
prediction and associated uncertainty (Kyriakidis, 2004). From the
performance assessment of the iterative numerical deconvolution
method using irregular BSO, Goovaerts (2008) concluded that the
behaviour at the origin of the PoS variogram model (i.e. the nugget
effect and within-block semivariance) could not be characterised
with only BSO. Recently, Nagle et al. (2011) pointed out that the BSO
retain little information to infer the nugget component of the PoS
variogram and recommended using prior knowledge to overcome
this problem.

The advantage of using a Bayesian approach is that the Bayesian
estimator can quantify the uncertainty about the inference of the
PoS variogram parameters. It is also the only formalised method
to combine prior knowledge with BSO. However, extracting expert
knowledge as informative priors is a delicate process in order to
obtain reliable information. Much research has been done recently
on using statistical expert elicitation (SEE) to extract expert knowl-
edge to use as informative priors for Bayesian statistical models, e.g.
in Bayesian environmental and ecological modelling (Choy et al.,
2009; Kuhnert et al., 2010; Kuhnert, 2011) and Bayesian geolog-
ical modelling (Wood and Curtis, 2004). Formal SEE (Garthwaite
et al., 2005; O’Hagan et al., 2006) provides transparent and reliable
techniques to elicit from expert knowledge the probability distribu-
tions of the PoS variogram parameters to use as informative priors
(Truong and Heuvelink, 2013; Truong et al., 2013). The SEE pro-
cedure comprises several structured stages: starting from defining
the issues that require expert knowledge, finding experts, choos-
ing an elicitation approach and doing the real elicitation task with
experts to post-processing and using the SEE outcomes. There is
increasing literature presenting detailed guidelines of developing
and using SEE methods, e.g. Hahn (2006), Knol et al. (2010), Kuhnert
et al. (2010), O’Hagan (2012) to name a few. This promises to be a
sufficient solution for the issue of lacking information from BSO to
infer the nugget component of the PoS variogram.

Our aim in this study was twofold. Firstly, we wanted to resolve
the issue of poor estimation of the nugget effect from BSO by
using a Bayesian approach that incorporates knowledge of mul-
tiple experts. Secondly, we wanted to quantify the propagation of
PoS variogram parameters and ATP kriging model uncertainty to
the disaggregated outcomes using Bayesian ATP conditional simu-
lation. We  illustrate the method with an example on disaggregating
MODIS air temperature data measured on a coarse grid of 5 km res-
olution to a finer grid of 1 km resolution. To this end, the remainder
of this paper has three main sections. Section 2 presents the statis-
tical methods and a description of the example. Section 3 presents
the main results of the study and a discussion. Section 4 provides
the conclusions and recommendations for further research.

2. Materials and methods

Fig. 1 shows the three main steps of the method.

2.1. Data

Spaceborne thermal imagery is becoming important in climate
modelling, soil moisture assessment, irrigation management,
etc. (Kuenzer et al., 2013a,b; Ha et al., 2013). Products of daily
spaceborne thermal imagery often have lower spatial resolution
(e.g., MODIS: 1–5 km,  NOAA-AVHRR: 1 km,  Sentinel 3-ESA future
mission: 1 km), whereas higher spatial resolution at several tenths
of metres is often required, e.g. in precision agriculture or irriga-
tion management at field level or in assessing urban heat effect
(Kuenzer et al., 2013a,b). For these reasons and for illustration
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