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a  b  s  t  r  a  c  t

Remote  sensing  has  been  used  for direct  and  indirect  detection  of hydrocarbons.  Most  studies  so  far
focused  on  indirect  detection  in vegetated  areas.  We  investigated  in  this  research  the  possibility  of
detecting  hydrocarbons  in  bare  soil  through  spectral  analysis  of  laboratory  samples  in  the  short  wave
and thermal  infrared  regions.  Soil/oil  mixtures  were  spectrally  measured  in the laboratory.  Analysis  of
spectra showed  development  of  hydrocarbon  absorption  features  as  soils  became  progressively  more
contaminated.  The  future  application  of these  results  airborne  seems  to  be  a challenge  as  present  and
future  sensors  only  cover  the  diagnostic  regions  to  a limited  extent.

© 2012  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Remote sensing in the near- and shortwave infrared can be
used for direct and indirect detection of hydrocarbons. Previous
research largely focused on direct spectral detection of hydrocar-
bons (e.g. Lammoglia and Filho, 2011; Bihong et al., 2007; van der
Werff et al., 2006; Winkelmann, 2005; Kühn et al., 2004; Hörig et al.,
2001; Malley et al., 1999). The presence of hydrocarbons in a soil
can also lead to chemical and mineralogical alterations. Bacterial
oxidation of hydrocarbons can establish anomalous redox zones
that favour the development of a diverse array of chemical changes
(Schumacher and Abrams, 1996). An overview of hydrocarbon-
induced alterations, and consequences for remote sensing is given
by van der Meer et al. (2002),  Schumacher and Abrams (1996), and
Cloutis (1989).

The aforementioned studies focused on natural hydrocarbon
seepage and/or controlled experiments. Recent work, related to
pipeline leakage, in the laboratory (Noomen et al., 2006; Smith
et al., 2004), field (van der Meijde et al., 2009) and airborne (van
der Werff et al., 2008), showed that indirect detection of hydrocar-
bons through analysis of vegetation reflectance is possible. These
studies, however, focused only on areas with relatively dense vege-
tation cover, leaving areas with little or no vegetation unaccounted
for.
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In this research, we  investigate the possibility of detecting
hydrocarbons in bare soil through spectral analysis of the short
wave and thermal infrared wavelength regions. Based on the
discriminative wavelengths found and available thermal infrared
sensors, a feasibility study shows that the direct applicability of
such techniques for airborne based detection and monitoring is
currently limited.

2. Methods

2.1. Laboratory experiment

The laboratory experiment consisted of two stages. At first,
10.00 g soil samples was  created from a mixture of air-dried clay
soil and a hydrocarbon (Shell mineral engine oil). The hydrocarbons
were added to the soil in increments of 10% weight, from 10% till
100% hydrocarbon content. In the second stage, the air-dried clay
soil was  moistened (8.50 g soil to 1.50 g water) and well mixed to
make it comparable to field conditions. The sample was  prepared
with hydrocarbon concentrations that ranged between 0 and 10%
of the moistened soil weight, in increments of 1%. Directly follow-
ing sample preparation spectral samples were measured thereby
minimising the possibility of evaporation.

2.2. Instrument and spectral measurement set-up

Thermal and shortwave infra-red spectra were recorded with
a Bruker Vertex 70 Fourier Transform Infrared (FTIR) spectrometer
(Hecker et al., 2011). Diffuse Reflectance Infrared Fourier Transform
(DRIFT) spectral measurements were recorded in the wavenumber

0303-2434/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.jag.2012.11.001

dx.doi.org/10.1016/j.jag.2012.11.001
http://www.sciencedirect.com/science/journal/03032434
http://www.elsevier.com/locate/jag
mailto:vandermeijde@itc.nl
dx.doi.org/10.1016/j.jag.2012.11.001


M.  van der Meijde et al. / International Journal of Applied Earth Observation and Geoinformation 23 (2013) 384–388 385

range of 5000–500 cm−1. For laboratory samples a spectral resolu-
tion of 2 cm−1 and 64 scans per sample was used. For field samples
the number of scans was increased to 500 to enhance the signal-
to-noise ratio. The sample was stirred in its cannister and a random
sub-sample was drawn to fill the sample holder. The sub-sample
was levelled to ensure a flat measurement surface and placed in the
DRIFT compartment (following a background reference measure)
to take a sample measurement. The sub-sample was then rotated
180◦ and measured again, thereby capturing brightness differences
resulting from scattering due to soil structure. Thus, for each sub-
sample two spectra were measured. A total of five sub-samples (10
spectra in total) were measured per sample.

2.3. Statistical analysis

Spectral data shows strong co-linearity between wavelengths,
therefore analysis should consider how to account for this. The large
sample size of the laboratory data set allowed for the application of
a partial least squares regression (PLSR, Wold et al., 2001) to initially
reduce the dimensionality of the data by identifying significantly
contributing wavelengths and to reduce the impact of co-linearity
on the modelling.

The FTIR dataset was split randomly into 75% for training and
25% for model validation. Applying PLSR (see Hecker et al. (2012) for
an application of PLSR to thermal infrared spectra), latent variables
were selected which reduced the prediction residual error sum of
squares values observed in the training data. The summed absolute
loadings of the selected latent variables were then used to identify
which wavelengths contributed most to the derived model. Once
the number of latent variables had been selected, the (absolute)
loading values of these variables were summed, to determine which
wavenumbers were contributing most. A major limitation is that
the results of PLSR analysis are dependent on the hydrocarbon type
it was trained for and the uncertainty estimates are only valid for
a dataset that is compositionally comparable (in average as well as
extreme values) to the training dataset.

To account for this limitation of the PLSR and in an attempt
to create a model that can generalise to new data, we  selected
the 10 highest loading peaks identified in the PLSR modelling
and applied a stepwise multiple linear regression (SMLR, Crawley,
2006; Grossman et al., 1996) to these wavelengths. Since the data
has been strongly reduced and co-linearity already addressed in
the PLSR modelling this can now deliver a model that is more

independent from the hydrocarbon type used. Prior to perform-
ing a forward/backward SMLR procedure it was verified that the
data followed a non-normal distribution and these were therefore
arc-sine transformed (Crawley, 2006). The SMLR models were then
validated using the independent validation set.

3. Results

3.1. Trends in spectra

Analysis of both dry soil to oil mixtures (0–100% hydrocarbon
contamination) as well as the moist soil to oil mixtures (0–10%
hydrocarbon contamination) shows that there was  development
of hydrocarbon features and reduction in the soil features as soils
became progressively more contaminated (see Fig. 1 for an example
of the moist mixture). The most dominant and specific hydrocarbon
features (Stuart, 2004) between 2850 and 2960 cm−1 were already
visible from a hydrocarbon concentration of approximately 1%. Fur-
thermore, an absorption feature is present in the C H fingerprint
region of 1000–1275 cm−1 which is becoming increasingly visible
with increasing hydrocarbon content. Other spectral features are
related to water content and/or soil composition and are getting
smaller with increasing hydrocarbon content.

3.2. Modelling

The presence of water in soils can potentially reduce spectral
detection capabilities. The results indicate, however, that hydro-
carbons can be detected under moist conditions and for low
concentrations. The modelling is therefore only done on the moist
samples, since that provides a model that is close to reality. This
results in a selection of 3 latent variables. The summed loading pro-
vides an overview of wavenumbers that contribute to the highest
loadings in the PLSR model. The wavenumbers with highest loading
are indicated in Fig. 1 and further used in the SMLR analysis.

The wavenumbers selected from the loading plot to be used
as input into the SMLR modelling for moist soil/oil samples
were: 1045, 1416, 1465, 1613, 1800, 1876, 2515, 2850, 2920, and
3158 cm−1. Except for 3158 cm−1, all wavenumbers can be asso-
ciated with hydrocarbons. Wavenumber 3158 cm−1 is associated
with a gaseous vibrational water molecule (Winkelmann, 2005)
and therefore related to the moistened soil in this experiment. From
this list, 1045, 1416, 1465, 1876, 2515, 2850, 2920 cm−1 were the
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Fig. 1. Average spectrum for HC (oil) contaminated soil ranging between 0 and 10% contamination levels. For visualisation purposes only the even percentages pollution
levels  are shown and offset in steps of 0.02 with respect to the lowest concentration spectrum. The wavenumbers highlighted (vertical lines) are those selected in the PLSR
analysis for inclusion in the SMLR modelling. Typical regions for C H spectral features are indicated in grey (after Stuart (2004)).
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